{"title":"Infrared and Visible Image Fusion Based on Biological Vision","authors":"Qianqian Han, Runping Xi, Qian Chen","doi":"10.1109/ICIVC55077.2022.9887132","DOIUrl":null,"url":null,"abstract":"Infrared images can acquire salient targets, while visible images contain richer details. It is vital to fuse these two types of images. Benefiting from the existence of the dual-mode cellular mechanism, the rattlesnake is able to process and fusion infrared and visible signals, improving the predatory ability. In this paper, we design an auto-encoder fusion network based on the visual adversarial receptor domain. In this network, we build a feature-level fusion strategy based on the dual-modal cell mechanism which is simulated by the human visual cell’s center-antagonistic receptor domain. Meanwhile, we optimize the feature extraction and feature reconstruction modules in fusion network. By realized the combined research of biological vision and computer vision, our network delivers a better performance than the state-of-the-art methods in both subjective and objective evaluation.","PeriodicalId":227073,"journal":{"name":"2022 7th International Conference on Image, Vision and Computing (ICIVC)","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC55077.2022.9887132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared images can acquire salient targets, while visible images contain richer details. It is vital to fuse these two types of images. Benefiting from the existence of the dual-mode cellular mechanism, the rattlesnake is able to process and fusion infrared and visible signals, improving the predatory ability. In this paper, we design an auto-encoder fusion network based on the visual adversarial receptor domain. In this network, we build a feature-level fusion strategy based on the dual-modal cell mechanism which is simulated by the human visual cell’s center-antagonistic receptor domain. Meanwhile, we optimize the feature extraction and feature reconstruction modules in fusion network. By realized the combined research of biological vision and computer vision, our network delivers a better performance than the state-of-the-art methods in both subjective and objective evaluation.