Visualization of Uncertainty for Computationally Intensive Simulations Using High Fidelity Emulators

Ayan Biswas, Kelly R. Moran, E. Lawrence, J. Ahrens
{"title":"Visualization of Uncertainty for Computationally Intensive Simulations Using High Fidelity Emulators","authors":"Ayan Biswas, Kelly R. Moran, E. Lawrence, J. Ahrens","doi":"10.1109/SciVis.2018.8823603","DOIUrl":null,"url":null,"abstract":"Visualization of high-fidelity scientific simulations with high-dimensional inputs and outputs is an important task. Existing high-dimensional data visualization approaches generally assume a substantial amount of data are available or can be generated as needed. However, many of these simulations can be very computationally intensive, taking minutes or hours to run. Analysis and visualization of such expensive simulations poses a challenge. Statistical emulators are frequently used to approximate simulations for statistical analyses. In this work, we propose a visualization tool for an emulator of the simulator and describe how emulators can be used to create effective visualization systems. We choose Gaussian process emulators for this purpose as they enable fast and accurate prediction with uncertainty information. Using these predictions, we design a system that enables visualization of high-dimensional input and output spaces of complex physics simulations. Users of our system can get a detailed understanding of the uncertainties associated with the emulator predictions in both input and output space for a high-dimensional simulation.","PeriodicalId":306021,"journal":{"name":"2018 IEEE Scientific Visualization Conference (SciVis)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Scientific Visualization Conference (SciVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SciVis.2018.8823603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visualization of high-fidelity scientific simulations with high-dimensional inputs and outputs is an important task. Existing high-dimensional data visualization approaches generally assume a substantial amount of data are available or can be generated as needed. However, many of these simulations can be very computationally intensive, taking minutes or hours to run. Analysis and visualization of such expensive simulations poses a challenge. Statistical emulators are frequently used to approximate simulations for statistical analyses. In this work, we propose a visualization tool for an emulator of the simulator and describe how emulators can be used to create effective visualization systems. We choose Gaussian process emulators for this purpose as they enable fast and accurate prediction with uncertainty information. Using these predictions, we design a system that enables visualization of high-dimensional input and output spaces of complex physics simulations. Users of our system can get a detailed understanding of the uncertainties associated with the emulator predictions in both input and output space for a high-dimensional simulation.
使用高保真仿真器进行计算密集模拟的不确定性可视化
具有高维输入和输出的高保真科学仿真的可视化是一项重要的任务。现有的高维数据可视化方法通常假设有大量可用的数据,或者可以根据需要生成数据。然而,这些模拟中的许多可能是非常密集的计算,需要几分钟或几个小时才能运行。如此昂贵的模拟的分析和可视化带来了挑战。统计模拟器经常用于统计分析的近似模拟。在这项工作中,我们提出了一个仿真器的可视化工具,并描述了如何使用仿真器来创建有效的可视化系统。为此,我们选择高斯过程仿真器,因为它们能够快速准确地预测不确定信息。利用这些预测,我们设计了一个系统,使复杂物理模拟的高维输入和输出空间可视化。该系统的用户可以对高维仿真的输入和输出空间中与仿真器预测相关的不确定性有详细的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信