Fractional order model for the spread of leptospirosis

M. El-shahed
{"title":"Fractional order model for the spread of leptospirosis","authors":"M. El-shahed","doi":"10.12988/IJMA.2014.410312","DOIUrl":null,"url":null,"abstract":"This paper deals with the fractional order for the spread of Leptospirosis. The non-local property of Leptospirosis epidemic model presented by fractional order differential equation makes the model to be more realistic compare to the analogues integer order, which lacks this property. The stability of disease free and positive fixed points is studied. We show that the model introduced in this paper has non negative solutions. AdamsBashforthMoulton algorithm have been used to solve and simulate the system of differential equations. Mathematics Subject Classification: 92B05, 93A30, 93C15","PeriodicalId":431531,"journal":{"name":"International Journal of Mathematical Analysis","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/IJMA.2014.410312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper deals with the fractional order for the spread of Leptospirosis. The non-local property of Leptospirosis epidemic model presented by fractional order differential equation makes the model to be more realistic compare to the analogues integer order, which lacks this property. The stability of disease free and positive fixed points is studied. We show that the model introduced in this paper has non negative solutions. AdamsBashforthMoulton algorithm have been used to solve and simulate the system of differential equations. Mathematics Subject Classification: 92B05, 93A30, 93C15
钩端螺旋体病传播的分数阶模型
本文讨论了钩端螺旋体病传播的分数阶。分数阶微分方程所表示的钩端螺旋体病流行模型的非局域性,使得该模型比类似的整数阶模型更具有现实性。研究了无病不动点和正不动点的稳定性。我们证明了本文所引入的模型具有非负解。采用adams - bashforth - moulton算法对微分方程组进行求解和模拟。数学学科分类:92B05, 93A30, 93C15
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信