Domain-Adapted BERT-based Models for Nuanced Arabic Dialect Identification and Tweet Sentiment Analysis

Giyaseddin Bayrak, Abdul Majeed Issifu
{"title":"Domain-Adapted BERT-based Models for Nuanced Arabic Dialect Identification and Tweet Sentiment Analysis","authors":"Giyaseddin Bayrak, Abdul Majeed Issifu","doi":"10.18653/v1/2022.wanlp-1.43","DOIUrl":null,"url":null,"abstract":"This paper summarizes the solution of the Nuanced Arabic Dialect Identification (NADI) 2022 shared task. It consists of two subtasks: a country-level Arabic Dialect Identification (ADID) and an Arabic Sentiment Analysis (ASA). Our work shows the importance of using domain-adapted models and language-specific pre-processing in NLP task solutions. We implement a simple but strong baseline technique to increase the stability of fine-tuning settings to obtain a good generalization of models. Our best model for the Dialect Identification subtask achieves a Macro F-1 score of 25.54% as an average of both Test-A (33.89%) and Test-B (19.19%) F-1 scores. We also obtained a Macro F-1 score of 74.29% of positive and negative sentiments only, in the Sentiment Analysis task.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"246 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wanlp-1.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper summarizes the solution of the Nuanced Arabic Dialect Identification (NADI) 2022 shared task. It consists of two subtasks: a country-level Arabic Dialect Identification (ADID) and an Arabic Sentiment Analysis (ASA). Our work shows the importance of using domain-adapted models and language-specific pre-processing in NLP task solutions. We implement a simple but strong baseline technique to increase the stability of fine-tuning settings to obtain a good generalization of models. Our best model for the Dialect Identification subtask achieves a Macro F-1 score of 25.54% as an average of both Test-A (33.89%) and Test-B (19.19%) F-1 scores. We also obtained a Macro F-1 score of 74.29% of positive and negative sentiments only, in the Sentiment Analysis task.
基于领域适应bert的阿拉伯语方言识别和微博情感分析模型
本文总结了细致入微的阿拉伯语方言识别(NADI) 2022共享任务的解决方案。它由两个子任务组成:国家级阿拉伯语方言识别(addid)和阿拉伯语情感分析(ASA)。我们的工作显示了在NLP任务解决方案中使用领域适应模型和特定语言预处理的重要性。我们实现了一种简单但强大的基线技术来增加微调设置的稳定性,以获得良好的模型泛化。我们的方言识别子任务的最佳模型在测试a(33.89%)和测试b(19.19%)的F-1分数的平均值下获得了25.54%的宏观F-1分数。在情绪分析任务中,我们也获得了仅正面和负面情绪的宏观F-1得分为74.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信