POE: A General Portfolio Optimization Environment for FinRL

Caio de Souza Barbosa Costa, Anna Helena Reali Costa
{"title":"POE: A General Portfolio Optimization Environment for FinRL","authors":"Caio de Souza Barbosa Costa, Anna Helena Reali Costa","doi":"10.5753/bwaif.2023.231144","DOIUrl":null,"url":null,"abstract":"Portfolio optimization is a common task in financial markets in which a manager rebalances the invested assets in the portfolio periodically aiming to make a profit, minimize losses and maximize long-term returns. Due to their great adaptability, Reinforcement Learning (RL) techniques are considered convenient for this task but, despite RL’s great results, there is a lack of standardization related to simulation environments. In this paper, we present an RL environment for the portfolio optimization problem based on state-of-the-art mathematical formulations. The environment aims to be easy-to-use, very customizable, and have integrations with modern RL frameworks.","PeriodicalId":101527,"journal":{"name":"Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023)","volume":"236 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/bwaif.2023.231144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Portfolio optimization is a common task in financial markets in which a manager rebalances the invested assets in the portfolio periodically aiming to make a profit, minimize losses and maximize long-term returns. Due to their great adaptability, Reinforcement Learning (RL) techniques are considered convenient for this task but, despite RL’s great results, there is a lack of standardization related to simulation environments. In this paper, we present an RL environment for the portfolio optimization problem based on state-of-the-art mathematical formulations. The environment aims to be easy-to-use, very customizable, and have integrations with modern RL frameworks.
POE:面向FinRL的通用投资组合优化环境
投资组合优化是金融市场上的一项常见任务,即管理者定期重新平衡投资组合中的投资资产,以实现盈利、最小化损失和最大化长期回报。由于其强大的适应性,强化学习(RL)技术被认为可以方便地完成这项任务,但是,尽管RL取得了巨大的成果,但缺乏与模拟环境相关的标准化。在本文中,我们提出了一个基于最先进的数学公式的投资组合优化问题的强化学习环境。该环境的目标是易于使用,非常可定制,并与现代RL框架集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信