Inverse problem of determining an order of the Riemann-Liouville time-fractional derivative

S. Alimov, R. Ashurov
{"title":"Inverse problem of determining an order of the Riemann-Liouville time-fractional derivative","authors":"S. Alimov, R. Ashurov","doi":"10.7153/fdc-2021-11-14","DOIUrl":null,"url":null,"abstract":"The inverse problem of determining the order of the fractional RiemannLiouville derivative with respect to time in the subdiffusion equation with an arbitrary positive self-adjoint operator having a discrete spectrum is considered. Using the classical Fourier method it is proved, that the value of the norm ||u(t)|| of the solution at a fixed time instance recovers uniquely the order of derivative. A list of examples is discussed, including a linear system of fractional differential equations, differential models with involution, fractional Sturm-Liouville operators, and many others. AMS 2000 Mathematics Subject Classifications : Primary 35R11; Secondary 74S25.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2021-11-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The inverse problem of determining the order of the fractional RiemannLiouville derivative with respect to time in the subdiffusion equation with an arbitrary positive self-adjoint operator having a discrete spectrum is considered. Using the classical Fourier method it is proved, that the value of the norm ||u(t)|| of the solution at a fixed time instance recovers uniquely the order of derivative. A list of examples is discussed, including a linear system of fractional differential equations, differential models with involution, fractional Sturm-Liouville operators, and many others. AMS 2000 Mathematics Subject Classifications : Primary 35R11; Secondary 74S25.
确定Riemann-Liouville时间分数阶导数阶数的反问题
研究了具有离散谱的任意正自伴随算子的次扩散方程分数阶黎曼-刘维尔导数关于时间的反问题。利用经典傅里叶方法证明了解的范数u(t)在固定时间实例上的值唯一地恢复导数的阶数。讨论了一系列的例子,包括分数阶微分方程的线性系统,有对合的微分模型,分数阶Sturm-Liouville算子,和许多其他的。AMS 2000数学学科分类:小学35R11;二次74 s25。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信