Pineplot

K. Ovens, D. J. Hogan, F. Maleki, Ian McQuillan, A. Kusalik
{"title":"Pineplot","authors":"K. Ovens, D. J. Hogan, F. Maleki, Ian McQuillan, A. Kusalik","doi":"10.1145/3365953.3365959","DOIUrl":null,"url":null,"abstract":"An effective publication-quality visualization tells a concise story from data. Methods and tools that facilitate making such visualizations are valuable to the scientific community. In this paper, we introduce pineplot, an R package for generating insightful visualizations called pine plots. Pine plots are applicable to a wide variety of datasets and create a holistic picture of the relationship between variables across different experimental conditions. A pine plot provides a means to visualize a group of symmetric matrices, each represented by triangular heat maps. Pine plots can be used to visualize large datasets for exploratory data analysis while controlling for different potentially confounding factors. The utility of the package is demonstrated by visualizing gene expression values of tissue-specific genes from RNA-seq data and the clinical factors in a liver disease and a heart disease dataset. The implementation of pineplot offers a straightforward procedure for generating pine plots; full control of the aesthetic elements of generated plots; and the possibility of augmenting generated plots with extra layers of graphical elements to further extend their usability.","PeriodicalId":158189,"journal":{"name":"Proceedings of the Tenth International Conference on Computational Systems-Biology and Bioinformatics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth International Conference on Computational Systems-Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365953.3365959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An effective publication-quality visualization tells a concise story from data. Methods and tools that facilitate making such visualizations are valuable to the scientific community. In this paper, we introduce pineplot, an R package for generating insightful visualizations called pine plots. Pine plots are applicable to a wide variety of datasets and create a holistic picture of the relationship between variables across different experimental conditions. A pine plot provides a means to visualize a group of symmetric matrices, each represented by triangular heat maps. Pine plots can be used to visualize large datasets for exploratory data analysis while controlling for different potentially confounding factors. The utility of the package is demonstrated by visualizing gene expression values of tissue-specific genes from RNA-seq data and the clinical factors in a liver disease and a heart disease dataset. The implementation of pineplot offers a straightforward procedure for generating pine plots; full control of the aesthetic elements of generated plots; and the possibility of augmenting generated plots with extra layers of graphical elements to further extend their usability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信