SoftVN

Muhammad Umar, Weizhe Hua, Zhiru Zhang, G. Suh
{"title":"SoftVN","authors":"Muhammad Umar, Weizhe Hua, Zhiru Zhang, G. Suh","doi":"10.1145/3470496.3527378","DOIUrl":null,"url":null,"abstract":"Trusted execution environments (TEEs) in processors protect off-chip memory (DRAM), and ensure its confidentiality and integrity using memory encryption and integrity verification. However, such memory protection can incur significant performance overhead as it requires additional memory accesses for protection metadata such as version numbers (VNs) and MACs. This paper proposes SoftVN, an extension to the current memory protection schemes, which significantly reduces the overhead of today's state-of-the-art by allowing software to provide VNs for memory accesses. For memory-intensive applications with simple memory access patterns for large data structures, the VNs only need to be maintained for data structures instead of individual cache blocks and can be tracked in software with low efforts. Off-chip VN accesses for memory reads can be removed if they are tracked and provided by software. We evaluate SoftVN by simulating a diverse set of memory-intensive applications, including deep learning, graph processing, and bioinformatics algorithms. The experimental results show that SoftVN reduces the memory protection overhead by 82% compared to the baseline similar to Intel SGX, and improves the performance by 33% on average. The maximum performance improvement can be as high as 65%.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Trusted execution environments (TEEs) in processors protect off-chip memory (DRAM), and ensure its confidentiality and integrity using memory encryption and integrity verification. However, such memory protection can incur significant performance overhead as it requires additional memory accesses for protection metadata such as version numbers (VNs) and MACs. This paper proposes SoftVN, an extension to the current memory protection schemes, which significantly reduces the overhead of today's state-of-the-art by allowing software to provide VNs for memory accesses. For memory-intensive applications with simple memory access patterns for large data structures, the VNs only need to be maintained for data structures instead of individual cache blocks and can be tracked in software with low efforts. Off-chip VN accesses for memory reads can be removed if they are tracked and provided by software. We evaluate SoftVN by simulating a diverse set of memory-intensive applications, including deep learning, graph processing, and bioinformatics algorithms. The experimental results show that SoftVN reduces the memory protection overhead by 82% compared to the baseline similar to Intel SGX, and improves the performance by 33% on average. The maximum performance improvement can be as high as 65%.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信