Accelerated segmentation approach with CUDA for high spatial resolution remotely sensed imagery based on improved Mean Shift

Xiaogu Sun, Manchun Li, Yong-xue Liu, Lu Tan, Wei Liu
{"title":"Accelerated segmentation approach with CUDA for high spatial resolution remotely sensed imagery based on improved Mean Shift","authors":"Xiaogu Sun, Manchun Li, Yong-xue Liu, Lu Tan, Wei Liu","doi":"10.1109/URS.2009.5137568","DOIUrl":null,"url":null,"abstract":"In conventional researches, satisfying results cannot be achieved when directly applying Mean Shift segmentation onto high spatial resolution (HR) remote sensing image. The proposed method addresses this problem and extents Mean Shift clustering algorithm into high-dimensional feature space by extracting texture and shape descriptor. The dilemma in image segmentation is that the algorithms with good performance are also the ones with much computational cost. To improve the performance of the standard Mean Shift segmentation for HR remote sensing images, an accelerated segmentation approach is proposed under Compute Unified Device Architecture (CUDA) framework. The experimental results demonstrate that the CUDA-based implementation works 20-30 times faster than the original implementation in CPU.","PeriodicalId":154334,"journal":{"name":"2009 Joint Urban Remote Sensing Event","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Joint Urban Remote Sensing Event","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URS.2009.5137568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In conventional researches, satisfying results cannot be achieved when directly applying Mean Shift segmentation onto high spatial resolution (HR) remote sensing image. The proposed method addresses this problem and extents Mean Shift clustering algorithm into high-dimensional feature space by extracting texture and shape descriptor. The dilemma in image segmentation is that the algorithms with good performance are also the ones with much computational cost. To improve the performance of the standard Mean Shift segmentation for HR remote sensing images, an accelerated segmentation approach is proposed under Compute Unified Device Architecture (CUDA) framework. The experimental results demonstrate that the CUDA-based implementation works 20-30 times faster than the original implementation in CPU.
基于改进Mean Shift的高空间分辨率遥感图像CUDA加速分割方法
在传统的研究中,直接将Mean Shift分割应用于高空间分辨率遥感图像并不能得到满意的结果。该方法通过提取纹理和形状描述符,将Mean Shift聚类算法扩展到高维特征空间。图像分割的难题是,性能好的算法同时也是计算量大的算法。为了提高标准的HR遥感图像Mean Shift分割方法的性能,提出了一种基于CUDA框架的加速分割方法。实验结果表明,基于cuda的实现比原来的CPU实现快20-30倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信