SAIS: Smartphone Augmented Infrastructure Sensing for Public Safety and Sustainability in Smart Cities

EMASC '14 Pub Date : 2014-11-07 DOI:10.1145/2661704.2661706
Chen-Chih Liao, Ting-Fang Hou, Ting-Yi Lin, Y. Cheng, A. Erbad, Cheng-Hsin Hsu, N. Venkatasubramanian
{"title":"SAIS: Smartphone Augmented Infrastructure Sensing for Public Safety and Sustainability in Smart Cities","authors":"Chen-Chih Liao, Ting-Fang Hou, Ting-Yi Lin, Y. Cheng, A. Erbad, Cheng-Hsin Hsu, N. Venkatasubramanian","doi":"10.1145/2661704.2661706","DOIUrl":null,"url":null,"abstract":"We consider the problem of efficiently using smartphone users to augment the stationary infrastructure sensors for better situation awareness in smart cities. We envision a dynamic sensing platform that intelligently assigns sensing tasks to volunteered smartphone users, in order to answer queries by performing sensing tasks at specific locations that may not be covered by in-situ infrastructure sensors. We mathematically formulate the problem into an integer programming problem to minimize the overall energy consumption while satisfying the required query accuracy. We present an optimal algorithm to solve this problem using an existing computationally expensive optimization solver. To reduce the running time, we also propose a more practical heuristic algorithm. Our trace-driven simulation results reveal the benefits of our proposed heuristic algorithm, it: (i) finishes all the tasks, (ii) achieves 6 times shorter response time, and (iii) performs better with more volunteers. In contrast, exclusively using in-situ sensors completes 6% of the tasks, while using in-situ sensors with opportunistic sensing (without user intervention) completes 20% of the tasks. Our prototype system is validated in a user study and receives fairly positive feedback from the smartphone users who utilize it to submit and answer various spatial/temporal dependent queries.","PeriodicalId":219201,"journal":{"name":"EMASC '14","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMASC '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2661704.2661706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We consider the problem of efficiently using smartphone users to augment the stationary infrastructure sensors for better situation awareness in smart cities. We envision a dynamic sensing platform that intelligently assigns sensing tasks to volunteered smartphone users, in order to answer queries by performing sensing tasks at specific locations that may not be covered by in-situ infrastructure sensors. We mathematically formulate the problem into an integer programming problem to minimize the overall energy consumption while satisfying the required query accuracy. We present an optimal algorithm to solve this problem using an existing computationally expensive optimization solver. To reduce the running time, we also propose a more practical heuristic algorithm. Our trace-driven simulation results reveal the benefits of our proposed heuristic algorithm, it: (i) finishes all the tasks, (ii) achieves 6 times shorter response time, and (iii) performs better with more volunteers. In contrast, exclusively using in-situ sensors completes 6% of the tasks, while using in-situ sensors with opportunistic sensing (without user intervention) completes 20% of the tasks. Our prototype system is validated in a user study and receives fairly positive feedback from the smartphone users who utilize it to submit and answer various spatial/temporal dependent queries.
智能手机增强基础设施感知,用于智慧城市的公共安全和可持续发展
我们考虑的问题是有效地利用智能手机用户来增强固定基础设施传感器,以提高智能城市的态势感知能力。我们设想一个动态传感平台,智能地将传感任务分配给自愿的智能手机用户,以便通过在现场基础设施传感器可能无法覆盖的特定位置执行传感任务来回答查询。为了在满足要求的查询精度的同时最小化总体能耗,我们在数学上将该问题转化为整数规划问题。我们提出了一个最优算法来解决这个问题,使用现有的计算昂贵的优化求解器。为了减少运行时间,我们还提出了一种更实用的启发式算法。我们的跟踪驱动模拟结果揭示了我们提出的启发式算法的好处,它:(i)完成了所有的任务,(ii)实现了6倍的响应时间缩短,(iii)在更多志愿者的情况下表现更好。相比之下,仅使用原位传感器完成了6%的任务,而使用带有机会传感的原位传感器(无需用户干预)完成了20%的任务。我们的原型系统在用户研究中得到了验证,并从使用它提交和回答各种空间/时间相关查询的智能手机用户那里获得了相当积极的反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信