Yuke Wang, Zhaorui Zeng, Boyuan Feng, Lei Deng, Yufei Ding
{"title":"KPynq: A Work-Efficient Triangle-Inequality Based K-Means on FPGA","authors":"Yuke Wang, Zhaorui Zeng, Boyuan Feng, Lei Deng, Yufei Ding","doi":"10.1109/FCCM.2019.00061","DOIUrl":null,"url":null,"abstract":"K-means is a popular but computation-intensive algorithm for unsupervised learning. To address this issue, we present KPynq, a work-efficient triangle-inequality based K-means on FPGA for handling large-size, high-dimension datasets. KPynq leverages an algorithm-level optimization to balance the performance and computation irregularity, and a hardware architecture design to fully exploit the pipeline and parallel processing capability of various FPGAs. In the experiment, KPynq consistently outperforms the CPU-based standard K-means in terms of its speedup (up to 4.2x) and significant energy efficiency (up to 218x).","PeriodicalId":116955,"journal":{"name":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","volume":"346 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2019.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
K-means is a popular but computation-intensive algorithm for unsupervised learning. To address this issue, we present KPynq, a work-efficient triangle-inequality based K-means on FPGA for handling large-size, high-dimension datasets. KPynq leverages an algorithm-level optimization to balance the performance and computation irregularity, and a hardware architecture design to fully exploit the pipeline and parallel processing capability of various FPGAs. In the experiment, KPynq consistently outperforms the CPU-based standard K-means in terms of its speedup (up to 4.2x) and significant energy efficiency (up to 218x).