D. Flores-Tapia, O. Maizlish, C. Alabaster, S. Pistorius
{"title":"A holographic reconstruction method for circular multistatic subsurface radar","authors":"D. Flores-Tapia, O. Maizlish, C. Alabaster, S. Pistorius","doi":"10.1109/WDD.2012.7311268","DOIUrl":null,"url":null,"abstract":"In recent years, the use of Subsurface Radar (SR) has been proposed for some emerging applications such as breast imaging and wood inspection. A circular scan geometry is usually used in these applications to better suit the morphology of the scan region. Nevertheless, the reconstruction of these kind of datasets is a non-trivial task due to the nature of the phase wrappings introduced by the scan geometry and the near field distances between the antenna and the targets. In this paper, a novel reconstruction algorithm for multistatic SR datasets recorded along cylindrical scan geometries is proposed. This image formation approach performs a series of operations in the frequency domain to compensate the effects of the scan geometry. The performance of the proposed method was evaluated using a series of simulated datasets. Compared with its monostatic counterpart, the proposed reconstruction algorithm generated images with a higher signal to noise ratio, spatial accuracy and focal quality.","PeriodicalId":102625,"journal":{"name":"2012 International Waveform Diversity & Design Conference (WDD)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Waveform Diversity & Design Conference (WDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WDD.2012.7311268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In recent years, the use of Subsurface Radar (SR) has been proposed for some emerging applications such as breast imaging and wood inspection. A circular scan geometry is usually used in these applications to better suit the morphology of the scan region. Nevertheless, the reconstruction of these kind of datasets is a non-trivial task due to the nature of the phase wrappings introduced by the scan geometry and the near field distances between the antenna and the targets. In this paper, a novel reconstruction algorithm for multistatic SR datasets recorded along cylindrical scan geometries is proposed. This image formation approach performs a series of operations in the frequency domain to compensate the effects of the scan geometry. The performance of the proposed method was evaluated using a series of simulated datasets. Compared with its monostatic counterpart, the proposed reconstruction algorithm generated images with a higher signal to noise ratio, spatial accuracy and focal quality.