Fast Extrinsic Calibration for Multiple Inertial Measurement Units in Visual-Inertial System

Youwei Yu, Yanqing Liu, Fengjie Fu, Sihan He, Dongchen Zhu, Lei Wang, Xiaolin Zhang, Jiamao Li
{"title":"Fast Extrinsic Calibration for Multiple Inertial Measurement Units in Visual-Inertial System","authors":"Youwei Yu, Yanqing Liu, Fengjie Fu, Sihan He, Dongchen Zhu, Lei Wang, Xiaolin Zhang, Jiamao Li","doi":"10.1109/ICRA48891.2023.10161187","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fast extrinsic calibration method for fusing multiple inertial measurement units (MIMU) to improve visual-inertial odometry (VIO) localization accuracy. Currently, data fusion algorithms for MIMU highly depend on the number of inertial sensors. Based on the assumption that extrinsic parameters between inertial sensors are perfectly calibrated, the fusion algorithm provides better localization accuracy with more IMUs, while neglecting the effect of extrinsic calibration error. Our method builds two non-linear least-squares problems to estimate the MIMU relative position and orientation separately, independent of external sensors and inertial noises online estimation. Then we give the general form of the virtual IMU (VIMU) method and propose its propagation on manifold. We perform our method on datasets, our self-made sensor board, and board with different IMUs, validating the superiority of our method over competing methods concerning speed, accuracy, and robustness. In the simulation experiment, we show that only fusing two IMUs with our calibration method to predict motion can rival nine IMUs. Real-world experiments demonstrate better localization accuracy of the VIO integrated with our calibration method and VIMU propagation on manifold.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10161187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a fast extrinsic calibration method for fusing multiple inertial measurement units (MIMU) to improve visual-inertial odometry (VIO) localization accuracy. Currently, data fusion algorithms for MIMU highly depend on the number of inertial sensors. Based on the assumption that extrinsic parameters between inertial sensors are perfectly calibrated, the fusion algorithm provides better localization accuracy with more IMUs, while neglecting the effect of extrinsic calibration error. Our method builds two non-linear least-squares problems to estimate the MIMU relative position and orientation separately, independent of external sensors and inertial noises online estimation. Then we give the general form of the virtual IMU (VIMU) method and propose its propagation on manifold. We perform our method on datasets, our self-made sensor board, and board with different IMUs, validating the superiority of our method over competing methods concerning speed, accuracy, and robustness. In the simulation experiment, we show that only fusing two IMUs with our calibration method to predict motion can rival nine IMUs. Real-world experiments demonstrate better localization accuracy of the VIO integrated with our calibration method and VIMU propagation on manifold.
视觉-惯性系统中多惯性测量单元的快速外部定标
本文提出了一种融合多个惯性测量单元(MIMU)的快速外部定标方法,以提高视觉惯性里程计(VIO)定位精度。目前,MIMU的数据融合算法高度依赖于惯性传感器的数量。该融合算法在假设惯性传感器间的外部参数得到完美标定的前提下,忽略了外部标定误差的影响,在imu数量较多的情况下提供了更好的定位精度。该方法建立了两个非线性最小二乘问题,分别估计MIMU的相对位置和方向,不依赖于外部传感器和惯性噪声的在线估计。然后给出了虚拟IMU (VIMU)方法的一般形式,并给出了它在流形上的传播。我们在数据集、自制的传感器板和不同imu的板上执行了我们的方法,验证了我们的方法在速度、准确性和鲁棒性方面优于竞争对手的方法。在仿真实验中,我们证明了仅用我们的校准方法融合两个imu来预测运动就可以与九个imu相媲美。实际实验表明,结合我们的标定方法和VIMU在流形上的传播,可以提高VIO的定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信