Motion compensated automatic image compositing for GoPro videos

Ryan Lustig, Balu Adsumilli, David Newman
{"title":"Motion compensated automatic image compositing for GoPro videos","authors":"Ryan Lustig, Balu Adsumilli, David Newman","doi":"10.1145/2945078.2945090","DOIUrl":null,"url":null,"abstract":"Image composition for GoPro videos captured in the presence of significant camera motion is a manual and time consuming process. Existing techniques typically fail to automate this process due to the wide-capture field of view and high camera motion of such videos. The proposed method seeks to solve these problems by developing an image registration algorithm for fisheye images without expensive pixel warping or loss of field of view. Background subtraction is performed to extract moving foreground objects, which are noise corrected and then layered on a reference image to build the final composite. The results show marked improvements in accuracy and efficiency for automating image composition.","PeriodicalId":417667,"journal":{"name":"ACM SIGGRAPH 2016 Posters","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2016 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2945078.2945090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image composition for GoPro videos captured in the presence of significant camera motion is a manual and time consuming process. Existing techniques typically fail to automate this process due to the wide-capture field of view and high camera motion of such videos. The proposed method seeks to solve these problems by developing an image registration algorithm for fisheye images without expensive pixel warping or loss of field of view. Background subtraction is performed to extract moving foreground objects, which are noise corrected and then layered on a reference image to build the final composite. The results show marked improvements in accuracy and efficiency for automating image composition.
运动补偿自动图像合成的GoPro视频
在存在显著相机运动的情况下拍摄GoPro视频的图像构图是一个手动且耗时的过程。现有的技术通常无法实现这一过程的自动化,因为这类视频的捕获范围很广,摄像机的运动也很高。该方法旨在通过开发一种无昂贵的像素扭曲或视场损失的鱼眼图像配准算法来解决这些问题。进行背景减法以提取移动的前景物体,然后对其进行噪声校正,然后在参考图像上分层以构建最终的复合图像。结果表明,自动合成图像的精度和效率有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信