Laser thermal recording on non-homogeneous medium

A. Lapchuk, I. Gorbov, A. Kryuchyn, Yu. O. Borodin
{"title":"Laser thermal recording on non-homogeneous medium","authors":"A. Lapchuk, I. Gorbov, A. Kryuchyn, Yu. O. Borodin","doi":"10.1117/12.2178482","DOIUrl":null,"url":null,"abstract":"The non-homogeneous multilayer medium was proposed for laser thermal recording. The mathematical model of laser thermal recording based on the phase transition of non-homogeneous medium (such as melting, ablation, evaporation) to simulate and optimize was developed. It was shown that in multilayer recording medium can be performed narrower structures than in monolayer films on similar conditions. It was shown that for getting small structures the thermoconduction of recording medium should be much smaller than the thermoconduction of substrate on which a medium is deposited. It was demonstrated that in the case of strong light absorption in recording layer its thermal conductivity must be sufficiently large to ensure the transfer of heat on a distance that equals to the thickness of the layer during a time interval equals to the difference in time for warming up to the phase transition temperature of the central part of the light spots and area that separated from a center of light spot on a distance equals to the thickness of layer.","PeriodicalId":347374,"journal":{"name":"Europe Optics + Optoelectronics","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europe Optics + Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2178482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The non-homogeneous multilayer medium was proposed for laser thermal recording. The mathematical model of laser thermal recording based on the phase transition of non-homogeneous medium (such as melting, ablation, evaporation) to simulate and optimize was developed. It was shown that in multilayer recording medium can be performed narrower structures than in monolayer films on similar conditions. It was shown that for getting small structures the thermoconduction of recording medium should be much smaller than the thermoconduction of substrate on which a medium is deposited. It was demonstrated that in the case of strong light absorption in recording layer its thermal conductivity must be sufficiently large to ensure the transfer of heat on a distance that equals to the thickness of the layer during a time interval equals to the difference in time for warming up to the phase transition temperature of the central part of the light spots and area that separated from a center of light spot on a distance equals to the thickness of layer.
非均匀介质上的激光热记录
提出了一种用于激光热记录的非均匀多层介质。建立了基于熔融、烧蚀、蒸发等非均匀介质相变的激光热记录数学模型,并对其进行了模拟和优化。结果表明,在相同条件下,在多层记录介质中可以实现比单层记录介质更窄的结构。结果表明,为了得到小的结构,记录介质的热传导应远远小于介质所沉积的衬底的热传导。表明,在强光的情况下吸收在记录层的导热系数必须足够大,以确保热量的传递的距离等于在一个时间间隔层的厚度等于热身的时差中央部分的相变温度点和区域分开上的光斑中心的距离等于层的厚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信