Stability analysis for stochastic Markovian jumping Neural Networks with leakage delay

Yajun Li, X. Dai, Wenping Xiao, L. Jiao
{"title":"Stability analysis for stochastic Markovian jumping Neural Networks with leakage delay","authors":"Yajun Li, X. Dai, Wenping Xiao, L. Jiao","doi":"10.2174/1874129001711010001","DOIUrl":null,"url":null,"abstract":"Abstract: The stability problem for a class of stochastic neural networks with Markovian jump parameters and leakage delay is addressed in this study. The sufficient condition to ensure an exponentially stable stochastic neural networks system is presented and proven with Lyapunov functional theory, stochastic stability technique and linear matrix inequality method. The effect of leakage delay on the stability of the neural networks system is discussed and numerical examples are provided to show the correctness and effectiveness of the research results .","PeriodicalId":370221,"journal":{"name":"The Open Electrical & Electronic Engineering Journal","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Electrical & Electronic Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874129001711010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: The stability problem for a class of stochastic neural networks with Markovian jump parameters and leakage delay is addressed in this study. The sufficient condition to ensure an exponentially stable stochastic neural networks system is presented and proven with Lyapunov functional theory, stochastic stability technique and linear matrix inequality method. The effect of leakage delay on the stability of the neural networks system is discussed and numerical examples are provided to show the correctness and effectiveness of the research results .
泄漏时滞随机马尔可夫跳变神经网络稳定性分析
摘要研究了一类具有马尔可夫跳变参数和泄漏延迟的随机神经网络的稳定性问题。利用李雅普诺夫泛函理论、随机稳定性技术和线性矩阵不等式方法,给出了随机神经网络系统指数稳定的充分条件,并进行了证明。讨论了泄漏延迟对神经网络系统稳定性的影响,并给出了数值算例,验证了研究结果的正确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信