The Improved Estimation of Distribution Algorithms for Community Detection

Ben-Da Zhou, Zhao Pan, Zhang Jinbo
{"title":"The Improved Estimation of Distribution Algorithms for Community Detection","authors":"Ben-Da Zhou, Zhao Pan, Zhang Jinbo","doi":"10.1109/iccia.2018.00021","DOIUrl":null,"url":null,"abstract":"Based on the analysis of local monotonic of modularity function, this paper designs a fast and effective mutation operator, and then proposes an improved Estimation of Distribution Algorithm (EDA) for solving community detection problem. The proposed algorithm is tested on basic network and big scale complex network. Experimental results show that this algorithm can get 0.419 8 for the average Q function while running 100 times, has better performance than Girvan-Newman(GN) algorithm, Fast Newman (FN) algorithm and Tasgin Genetic Algorithm (TGA).","PeriodicalId":297098,"journal":{"name":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccia.2018.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the analysis of local monotonic of modularity function, this paper designs a fast and effective mutation operator, and then proposes an improved Estimation of Distribution Algorithm (EDA) for solving community detection problem. The proposed algorithm is tested on basic network and big scale complex network. Experimental results show that this algorithm can get 0.419 8 for the average Q function while running 100 times, has better performance than Girvan-Newman(GN) algorithm, Fast Newman (FN) algorithm and Tasgin Genetic Algorithm (TGA).
社区检测中改进的分布估计算法
在分析模块化函数局部单调性的基础上,设计了一种快速有效的变异算子,并在此基础上提出了一种改进的分布估计算法(EDA)来解决社团检测问题。在基本网络和大规模复杂网络上对该算法进行了测试。实验结果表明,该算法在运行100次时平均Q函数可得到0.419 8,性能优于Girvan-Newman(GN)算法、Fast Newman(FN)算法和Tasgin Genetic algorithm (TGA)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信