Discriminative splitting of Gaussian/log-linear mixture HMMs for speech recognition

Muhammad Ali Tahir, R. Schlüter, H. Ney
{"title":"Discriminative splitting of Gaussian/log-linear mixture HMMs for speech recognition","authors":"Muhammad Ali Tahir, R. Schlüter, H. Ney","doi":"10.1109/ASRU.2011.6163896","DOIUrl":null,"url":null,"abstract":"This paper presents a method to incorporate mixture density splitting into the acoustic model discriminative log-linear training. The standard method is to obtain a high resolution model by maximum likelihood training and density splitting, and then further training this model discriminatively. For a single Gaussian density per state the log-linear MMI optimization is a global maximum problem, and by further splitting and discriminative training of this model we can get a higher complexity model. The mixture training is not a global maximum problem, nevertheless experimentally we achieve large gains in the objective function and corresponding moderate gains in the word error rate on a large vocabulary corpus","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a method to incorporate mixture density splitting into the acoustic model discriminative log-linear training. The standard method is to obtain a high resolution model by maximum likelihood training and density splitting, and then further training this model discriminatively. For a single Gaussian density per state the log-linear MMI optimization is a global maximum problem, and by further splitting and discriminative training of this model we can get a higher complexity model. The mixture training is not a global maximum problem, nevertheless experimentally we achieve large gains in the objective function and corresponding moderate gains in the word error rate on a large vocabulary corpus
用于语音识别的高斯/对数线性混合hmm的判别分裂
提出了一种将混合密度分解方法引入声学模型判别对数线性训练的方法。标准的方法是通过极大似然训练和密度分割得到一个高分辨率的模型,然后对该模型进行判别训练。对于单态高斯密度的对数线性MMI优化是一个全局极大值问题,通过对该模型的进一步拆分和判别训练,可以得到一个更高复杂度的模型。混合训练并不是一个全局极值问题,但在实验中,我们在大语料库上实现了目标函数的大幅度提高,相应的错误率也有适度的提高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信