A 65 fJ/b inductive-coupling inter-chip transceiver using charge recycling technique for power-aware 3D system integration

K. Niitsu, S. Kawai, N. Miura, H. Ishikuro, T. Kuroda
{"title":"A 65 fJ/b inductive-coupling inter-chip transceiver using charge recycling technique for power-aware 3D system integration","authors":"K. Niitsu, S. Kawai, N. Miura, H. Ishikuro, T. Kuroda","doi":"10.1109/ASSCC.2008.4708738","DOIUrl":null,"url":null,"abstract":"This paper discusses a low-power inductive-coupling link in 90 nm CMOS. The novel transmitter circuit using charge recycling technique for power-aware three-dimensional (3D) system integration is proposed and investigated. Cross-type daisy chain enables charge recycling and achieves power reduction while keeping communication performance such as high timing margin, low bit error rate and high bandwidth. There are two design issues in cross-type daisy, one is pulse amplitude reduction and another is inter-channel skew. To compensate them, inductor design and replica circuit is proposed and investigated. Test chips were designed and fabricated in 90 nm CMOS to verify the proposed transmitter. Measured result showed that proposed cross-type daisy chain transmitter achieved an energy efficiency of 65 fJ/bit without degrading any of timing margin, data rate and bit error rate.","PeriodicalId":143173,"journal":{"name":"2008 IEEE Asian Solid-State Circuits Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Asian Solid-State Circuits Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2008.4708738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper discusses a low-power inductive-coupling link in 90 nm CMOS. The novel transmitter circuit using charge recycling technique for power-aware three-dimensional (3D) system integration is proposed and investigated. Cross-type daisy chain enables charge recycling and achieves power reduction while keeping communication performance such as high timing margin, low bit error rate and high bandwidth. There are two design issues in cross-type daisy, one is pulse amplitude reduction and another is inter-channel skew. To compensate them, inductor design and replica circuit is proposed and investigated. Test chips were designed and fabricated in 90 nm CMOS to verify the proposed transmitter. Measured result showed that proposed cross-type daisy chain transmitter achieved an energy efficiency of 65 fJ/bit without degrading any of timing margin, data rate and bit error rate.
基于电荷回收技术的65fj /b电感耦合片间收发器
本文讨论了一种90nm CMOS低功耗电感耦合链路。提出并研究了一种利用电荷回收技术实现功率感知三维(3D)系统集成的新型发射电路。十字型菊花链在保持高时间余量、低误码率和高带宽等通信性能的同时,实现了充电循环和功耗降低。交叉型菊花的设计有两个问题,一个是脉冲幅度的降低,另一个是通道间的倾斜。为了弥补这些缺陷,提出并研究了电感设计和复制电路。设计并制作了90 nm CMOS测试芯片,以验证所提出的发射机。实测结果表明,在不降低时间余量、数据率和误码率的情况下,所提出的十字型菊花链发射机的能量效率达到65 fJ/bit。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信