A Super Baseline for Pedestrian Re-Identification

Jiwei Zhang, Haiyuan Wu
{"title":"A Super Baseline for Pedestrian Re-Identification","authors":"Jiwei Zhang, Haiyuan Wu","doi":"10.1109/ICMA52036.2021.9512703","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new baseline that combines and improves two types of deep learning algorithms to achieve more accurate pedestrian re-identification from images taken by surveillance cameras. We introduce some tricks into a famous strong baseline [1]. The main contributions are: 1) We improve IBN-Net [2] to replace the original ResNet50 (last stride = 1). 2) We perform model learning by using three common databases with different characteristics at the same time, except for the operation part of random erasing augmentation. 3) We add two new classifiers. 4) We optimize the parameters to prevent overfitting. We conducted ablation experiments on each trick using unlearned data and confirmed the effectiveness and stability of the proposed method from the results.","PeriodicalId":339025,"journal":{"name":"2021 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA52036.2021.9512703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a new baseline that combines and improves two types of deep learning algorithms to achieve more accurate pedestrian re-identification from images taken by surveillance cameras. We introduce some tricks into a famous strong baseline [1]. The main contributions are: 1) We improve IBN-Net [2] to replace the original ResNet50 (last stride = 1). 2) We perform model learning by using three common databases with different characteristics at the same time, except for the operation part of random erasing augmentation. 3) We add two new classifiers. 4) We optimize the parameters to prevent overfitting. We conducted ablation experiments on each trick using unlearned data and confirmed the effectiveness and stability of the proposed method from the results.
行人再识别的超级基线
在本文中,我们提出了一个新的基线,该基线结合并改进了两种类型的深度学习算法,以从监控摄像头拍摄的图像中实现更准确的行人重新识别。我们在著名的强基线中引入了一些技巧[1]。主要贡献有:1)改进了IBN-Net[2],取代了原来的ResNet50 (last stride = 1)。2)除了随机擦除增强的操作部分,我们同时使用三个不同特征的常用数据库进行模型学习。3)我们增加两个新的分类器。4)对参数进行优化,防止过拟合。我们利用未学习数据对每个技巧进行了烧蚀实验,结果证实了所提出方法的有效性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信