Heterogeneous AdaBoost with Real-time Constraints - Application to the Detection of Pedestrians by Stereovision

L. Jourdheuil, N. Allezard, T. Chateau, Thierry Chesnais
{"title":"Heterogeneous AdaBoost with Real-time Constraints - Application to the Detection of Pedestrians by Stereovision","authors":"L. Jourdheuil, N. Allezard, T. Chateau, Thierry Chesnais","doi":"10.5220/0003858305390546","DOIUrl":null,"url":null,"abstract":"This paper presents a learning based method for pedestrians detection, combining appearance and depth map descriptors. Recent works have presented the added value of this combination. We propose two contributions: 1) a comparative study of various depth descriptors including a fast descriptor based on average depth in a sub-window of the tested area and 2) an adaptation of the Adaboost algorithm in order to handle heterogeneous descriptors in terms of computational cost. Our goal is to build a detector balancing detection rate and execution time. We show the relevance of the proposed algorithm on real video data.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003858305390546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents a learning based method for pedestrians detection, combining appearance and depth map descriptors. Recent works have presented the added value of this combination. We propose two contributions: 1) a comparative study of various depth descriptors including a fast descriptor based on average depth in a sub-window of the tested area and 2) an adaptation of the Adaboost algorithm in order to handle heterogeneous descriptors in terms of computational cost. Our goal is to build a detector balancing detection rate and execution time. We show the relevance of the proposed algorithm on real video data.
具有实时约束的异构AdaBoost——在立体视觉行人检测中的应用
本文提出了一种基于学习的行人检测方法,该方法结合了外观图和深度图描述符。最近的作品展示了这种组合的附加价值。我们提出了两个贡献:1)对各种深度描述符进行比较研究,包括基于测试区域子窗口平均深度的快速描述符;2)从计算成本方面调整Adaboost算法以处理异构描述符。我们的目标是建立一个平衡检测率和执行时间的检测器。我们证明了该算法对真实视频数据的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信