Hydrodynamic Imaging using an all-optical 2D Artificial Lateral Line

B. Wolf, S. M. Netten
{"title":"Hydrodynamic Imaging using an all-optical 2D Artificial Lateral Line","authors":"B. Wolf, S. M. Netten","doi":"10.1109/SAS.2019.8706030","DOIUrl":null,"url":null,"abstract":"Fish and amphibians can sense their hydrodynamic environment via fluid flow sensing organs, called lateral lines. Using this lateral line they are able to detect disturbances in the hydrodynamic near field which enables hydrodynamic imaging, i.e. obstacle detection. Via two experiments we demonstrate a novel artificial lateral line of four bio-inspired 2D fluid flow sensors and show that the measurements of the enacted sensors agree with an established hydrodynamic model. These measurements from the array are then used to localize both vibrating and unidirectionally moving objects using an artificial neural network in a bounded area of 36 by 11 cm which extends beyond the area directly in front of the sensor array. In this area, the average Euclidean localization error is 1.3 cm for a vibrating object, while for moving a object it is on average 3.3 cm.","PeriodicalId":360234,"journal":{"name":"2019 IEEE Sensors Applications Symposium (SAS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2019.8706030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Fish and amphibians can sense their hydrodynamic environment via fluid flow sensing organs, called lateral lines. Using this lateral line they are able to detect disturbances in the hydrodynamic near field which enables hydrodynamic imaging, i.e. obstacle detection. Via two experiments we demonstrate a novel artificial lateral line of four bio-inspired 2D fluid flow sensors and show that the measurements of the enacted sensors agree with an established hydrodynamic model. These measurements from the array are then used to localize both vibrating and unidirectionally moving objects using an artificial neural network in a bounded area of 36 by 11 cm which extends beyond the area directly in front of the sensor array. In this area, the average Euclidean localization error is 1.3 cm for a vibrating object, while for moving a object it is on average 3.3 cm.
利用全光学二维人工侧线进行流体动力学成像
鱼类和两栖动物可以通过称为侧线的流体流动感应器官来感知它们的流体动力环境。利用这条侧线,他们能够检测流体动力近场中的干扰,从而实现流体动力成像,即障碍物检测。通过两个实验,我们展示了一种新型的由四个仿生二维流体流动传感器组成的人工侧线,并表明所制定的传感器的测量结果与所建立的流体动力学模型一致。这些来自阵列的测量结果,然后使用人工神经网络在36 × 11厘米的有界区域内定位振动和单向移动的物体,该区域超出了传感器阵列直接前面的区域。在该区域,振动物体的平均欧几里得定位误差为1.3 cm,运动物体的平均欧几里得定位误差为3.3 cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信