Benthic monitoring with robotic platforms — The experience of Australia

O. Pizarro, S. Williams, M. Jakuba, M. Johnson-Roberson, I. Mahon, M. Bryson, D. Steinberg, A. Friedman, D. Dansereau, N. Nourani-Vatani, D. Bongiorno, M. Bewley, A. Bender, N. Ashan, B. Douillard
{"title":"Benthic monitoring with robotic platforms — The experience of Australia","authors":"O. Pizarro, S. Williams, M. Jakuba, M. Johnson-Roberson, I. Mahon, M. Bryson, D. Steinberg, A. Friedman, D. Dansereau, N. Nourani-Vatani, D. Bongiorno, M. Bewley, A. Bender, N. Ashan, B. Douillard","doi":"10.1109/UT.2013.6519909","DOIUrl":null,"url":null,"abstract":"Australias Integrated Marine Observing System (IMOS) has a strategic focus on the impact of major boundary currents on continental shelf environments, ecosystems and biodiversity. To improve our understanding of natural, climate change, and human-induced variability in shelf environments, the IMOS Autonomous Underwater Vehicle (AUV) facility has been charged with generating physical and biological observations of benthic variables that cannot be cost-effectively obtained by other means. Starting in 2010, the IMOS AUV facility began collecting precisely navigated benthic imagery using AUVs at selected reference sites on Australias shelf. This observing program capitalizes on the unique capabilities of AUVs that have allowed repeated visits to the reference sites, providing a critical observational link between oceanographic and benthic processes. This paper provides a brief overview of the relevant capabilities of the AUV facility, the design of the IMOS benthic sampling program, and some preliminary results. We also report on some of the challenges and potential benefits to be realized from a benthic observation system that collects several TB of geo-referenced stereo imagery a year. This includes collaborative semi-automated image analysis, clustering and classification, large scale visualization and data mining, and lighting correction for change detection and characterization. We also mention some of the lessons from operating an AUV-based monitoring program and future work in this area.","PeriodicalId":354995,"journal":{"name":"2013 IEEE International Underwater Technology Symposium (UT)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Underwater Technology Symposium (UT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UT.2013.6519909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Australias Integrated Marine Observing System (IMOS) has a strategic focus on the impact of major boundary currents on continental shelf environments, ecosystems and biodiversity. To improve our understanding of natural, climate change, and human-induced variability in shelf environments, the IMOS Autonomous Underwater Vehicle (AUV) facility has been charged with generating physical and biological observations of benthic variables that cannot be cost-effectively obtained by other means. Starting in 2010, the IMOS AUV facility began collecting precisely navigated benthic imagery using AUVs at selected reference sites on Australias shelf. This observing program capitalizes on the unique capabilities of AUVs that have allowed repeated visits to the reference sites, providing a critical observational link between oceanographic and benthic processes. This paper provides a brief overview of the relevant capabilities of the AUV facility, the design of the IMOS benthic sampling program, and some preliminary results. We also report on some of the challenges and potential benefits to be realized from a benthic observation system that collects several TB of geo-referenced stereo imagery a year. This includes collaborative semi-automated image analysis, clustering and classification, large scale visualization and data mining, and lighting correction for change detection and characterization. We also mention some of the lessons from operating an AUV-based monitoring program and future work in this area.
用机器人平台监测底栖生物——澳大利亚的经验
澳大利亚综合海洋观测系统(IMOS)的战略重点是主要边界流对大陆架环境、生态系统和生物多样性的影响。为了提高我们对大陆架环境中自然、气候变化和人为引起的变化的理解,国际海事组织自主水下航行器(AUV)设施负责对底栖生物变量进行物理和生物观测,这些变量无法通过其他方式经济有效地获得。从2010年开始,国际海事组织的AUV设施开始在澳大利亚大陆架上选定的参考地点使用AUV收集精确导航的底栖生物图像。这一观测项目利用了auv的独特能力,它可以反复访问参考地点,在海洋学和底栖生物过程之间提供关键的观测联系。本文简要介绍了AUV设施的相关功能,IMOS底栖生物采样程序的设计以及一些初步结果。我们还报告了海底生物观测系统的一些挑战和潜在的好处,该系统每年收集几TB的地理参考立体图像。这包括协作式半自动图像分析、聚类和分类、大规模可视化和数据挖掘,以及用于变化检测和表征的光照校正。我们还提到了基于auv的监测项目的一些经验教训,以及该领域未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信