On Greedy Kaczmarz Method with Uniform Sampling for Consistent Tensor Linear Systems Based on T-Product: tGK method for consistent tensor linear systems

Yimou Liao, Tianxiu Lu
{"title":"On Greedy Kaczmarz Method with Uniform Sampling for Consistent Tensor Linear Systems Based on T-Product: tGK method for consistent tensor linear systems","authors":"Yimou Liao, Tianxiu Lu","doi":"10.1145/3577117.3577127","DOIUrl":null,"url":null,"abstract":"Solving large system of tensor linear equations is a fundamental problem in mathematics. This paper proposes a sampling tensor greedy Kaczmarz method (tGK) to solve large-scale linear systems with a t-product structure by introducing an effective greedy criterion, which eliminates the entry with the largest residual in the submatrix system per iteration. Then a relaxed tensor greedy Kaczmarz method (tRGK (ω)) is obtained by introducing the relaxation parameter ω to tGK, which can effectively change the convergence rate. The linear convergence of the two methods is guaranteed when the tensor linear system is consistent. Several experiments show that the methods designed in this paper converge faster compared with tensor randomized Kaczmarz (tRK). Moreover, selecting appropriate parameters ω can improve the convergence rate of tGK.","PeriodicalId":309874,"journal":{"name":"Proceedings of the 6th International Conference on Advances in Image Processing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Advances in Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577117.3577127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solving large system of tensor linear equations is a fundamental problem in mathematics. This paper proposes a sampling tensor greedy Kaczmarz method (tGK) to solve large-scale linear systems with a t-product structure by introducing an effective greedy criterion, which eliminates the entry with the largest residual in the submatrix system per iteration. Then a relaxed tensor greedy Kaczmarz method (tRGK (ω)) is obtained by introducing the relaxation parameter ω to tGK, which can effectively change the convergence rate. The linear convergence of the two methods is guaranteed when the tensor linear system is consistent. Several experiments show that the methods designed in this paper converge faster compared with tensor randomized Kaczmarz (tRK). Moreover, selecting appropriate parameters ω can improve the convergence rate of tGK.
基于T-Product的一致张量线性系统的一致采样贪心Kaczmarz方法:一致张量线性系统的tGK方法
求解大张量线性方程组是数学中的一个基本问题。本文通过引入一个有效的贪婪准则来消除每次迭代子矩阵系统中残差最大的条目,提出了求解具有t-积结构的大规模线性系统的采样张量贪婪Kaczmarz方法(tGK)。然后在tGK中引入松弛参数ω,得到松弛张量贪婪的Kaczmarz方法(tRGK (ω)),可以有效地改变收敛速度。当张量线性系统一致时,保证了两种方法的线性收敛性。实验表明,本文设计的方法收敛速度比张量随机化Kaczmarz (tRK)更快。此外,选择合适的参数ω可以提高tGK的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信