Bounded-Error Compression of Particle Data from Hierarchical Approximate Methods

Dow-Yung Yang, A. Grama, V. Sarin
{"title":"Bounded-Error Compression of Particle Data from Hierarchical Approximate Methods","authors":"Dow-Yung Yang, A. Grama, V. Sarin","doi":"10.1145/331532.331564","DOIUrl":null,"url":null,"abstract":"This paper presents an analytical and computational framework for the compression of particle data resulting from hierarchical approximate treecodes such as the Barnes-Hut and Fast Multipole Methods. Due to the approximations introduced by hierarchical methods, the position (as well as velocity and acceleration) of a particle can be bounded by a distortion radius. We develop storage schemes that maintain this distortion radii while maximizing compression. Our schemes make extensive use of spatial and temporal coherence of particle behavior and yield compression ratios higher than 12:1 over raw data, and 6:1 over gzipped (LZ78) raw data. We demonstrate that for uniform distributions with 100K particles, storage requirements can be reduced from 1200KB (100K × 12B) to about 99KB (under 1 byte per particle per timestep). This is significant because it enables faster storage/retrieval, better temporal resolution, and improved analysis. Our results are shown to scale from small systems (2K particles) to much larger systems (over 100K particles). The associated algorithm is optimal (O(n)) in both storage and computation with small constants.","PeriodicalId":354898,"journal":{"name":"ACM/IEEE SC 1999 Conference (SC'99)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 1999 Conference (SC'99)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/331532.331564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents an analytical and computational framework for the compression of particle data resulting from hierarchical approximate treecodes such as the Barnes-Hut and Fast Multipole Methods. Due to the approximations introduced by hierarchical methods, the position (as well as velocity and acceleration) of a particle can be bounded by a distortion radius. We develop storage schemes that maintain this distortion radii while maximizing compression. Our schemes make extensive use of spatial and temporal coherence of particle behavior and yield compression ratios higher than 12:1 over raw data, and 6:1 over gzipped (LZ78) raw data. We demonstrate that for uniform distributions with 100K particles, storage requirements can be reduced from 1200KB (100K × 12B) to about 99KB (under 1 byte per particle per timestep). This is significant because it enables faster storage/retrieval, better temporal resolution, and improved analysis. Our results are shown to scale from small systems (2K particles) to much larger systems (over 100K particles). The associated algorithm is optimal (O(n)) in both storage and computation with small constants.
基于层次近似方法的粒子数据有界误差压缩
本文提出了一种分析和计算框架,用于压缩由巴恩斯-胡特和快速多极方法等层次近似树码产生的粒子数据。由于由层次方法引入的近似,粒子的位置(以及速度和加速度)可以由扭曲半径限定。我们开发的存储方案,保持这种失真半径,同时最大限度地压缩。我们的方案广泛利用了粒子行为的时空相干性,在原始数据上的屈服压缩比高于12:1,在压缩(LZ78)原始数据上的屈服压缩比高于6:1。我们证明,对于具有100K粒子的均匀分布,存储需求可以从1200KB (100K × 12B)减少到大约99KB(每个时间步每个粒子不到1字节)。这很重要,因为它支持更快的存储/检索、更好的时间分辨率和改进的分析。我们的结果可以从小系统(2K粒子)扩展到更大的系统(超过100K粒子)。相关算法在存储和计算方面都是最优的(O(n))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信