PEMODELAN DATA SAHAM MENGGUNAKAN ANALISIS TIME SERIES DENGAN PENDEKATAN COPULA GAUSSIAN

M. Jannah, Fitria Mardika, Lilis Harianti Hasibuan, Darvi Mailisa Putri
{"title":"PEMODELAN DATA SAHAM MENGGUNAKAN ANALISIS TIME SERIES DENGAN PENDEKATAN COPULA GAUSSIAN","authors":"M. Jannah, Fitria Mardika, Lilis Harianti Hasibuan, Darvi Mailisa Putri","doi":"10.15548/mej.v5i2.3124","DOIUrl":null,"url":null,"abstract":"One method of predicting stock prices is to use the time series analysis method. In this method, a linear prediction model is made to see patterns from historical stock price data to assess future prices. The stock data used in this study is the daily stock data of PT. Telkom and PT. Indosat in 2020-2021. Autoregressive (AR) model is a time series model that is often used with the assumption that its volatility does not change with time (Homoscedastic). After analyzing the AR Model(1) data for the stock data of PT. Telkom and PT. Indosat has a non-independent error, therefore the AR(1)-N.GARCH(1,1) time series model construction was carried out to model the error (ϵ_(i,t)). Furthermore, the error of the AR(1)-N.GARCH(1,1) model is independent of t, so it can be modeled using Copula. After the Copula model was applied to the data and obtained the value of the fit of the Gaussian Copula distribution error model. From the values generated from the Gaussian Copula C({ϵ_(i,t) }_(t=1)^T ),T=1,2,…, and approximates a uniform distribution. So the stock data of PT. Telkom and PT. It can be said that Indosat is not suitable to be modeled with the Gaussian Copula.","PeriodicalId":231880,"journal":{"name":"Math Educa Journal","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math Educa Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15548/mej.v5i2.3124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One method of predicting stock prices is to use the time series analysis method. In this method, a linear prediction model is made to see patterns from historical stock price data to assess future prices. The stock data used in this study is the daily stock data of PT. Telkom and PT. Indosat in 2020-2021. Autoregressive (AR) model is a time series model that is often used with the assumption that its volatility does not change with time (Homoscedastic). After analyzing the AR Model(1) data for the stock data of PT. Telkom and PT. Indosat has a non-independent error, therefore the AR(1)-N.GARCH(1,1) time series model construction was carried out to model the error (ϵ_(i,t)). Furthermore, the error of the AR(1)-N.GARCH(1,1) model is independent of t, so it can be modeled using Copula. After the Copula model was applied to the data and obtained the value of the fit of the Gaussian Copula distribution error model. From the values generated from the Gaussian Copula C({ϵ_(i,t) }_(t=1)^T ),T=1,2,…, and approximates a uniform distribution. So the stock data of PT. Telkom and PT. It can be said that Indosat is not suitable to be modeled with the Gaussian Copula.
预测股票价格的一种方法是使用时间序列分析法。在这种方法中,建立一个线性预测模型,从历史股票价格数据中看到模式,以评估未来的价格。本研究使用的股票数据是PT. Telkom和PT. Indosat在2020-2021年的每日股票数据。自回归(AR)模型是一种时间序列模型,通常在假定其波动率不随时间变化(均方差)的情况下使用。在对PT. Telkom和PT. Indosat的股票数据进行AR Model(1)数据分析后,发现其存在非独立误差,因此我们构建AR(1)-N.GARCH(1,1)时间序列模型对误差(ϵ_(i,t))进行建模。此外,AR(1)-N.GARCH(1,1)模型的误差与t无关,因此可以使用Copula进行建模。将Copula模型应用于数据后,得到了高斯Copula分布误差模型的拟合值。从高斯Copula生成的值C({ϵ_(i,t)}_(t=1)^ t),t =1,2,…,近似均匀分布。所以PT. Telkom和PT. Indosat的股票数据,可以说是不适合用高斯Copula建模的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信