{"title":"Landmark-based shape deformation with topology-preserving constraints","authors":"Song Wang, J. Ji, Zhi-Pei Liang","doi":"10.1109/ICCV.2003.1238447","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for landmark-based shape deformation, in which fitting error and shape difference are formulated into a support vector machine (SVM) regression problem. To well describe nonrigid shape deformation, this paper measures the shape difference using a thin-plate spline model. The proposed approach is capable of preserving the topology of the template shape in the deformation. This property is achieved by inserting a set of additional points and imposing a set of linear equality and/or inequality constraints. The underlying optimization problem is solved using a quadratic programming algorithm. The proposed method has been tested using practical data in the context of shape-based image segmentation. Some relevant practical issues, such as missing detected landmarks and selection of the regularization parameter are also briefly discussed.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper presents a novel approach for landmark-based shape deformation, in which fitting error and shape difference are formulated into a support vector machine (SVM) regression problem. To well describe nonrigid shape deformation, this paper measures the shape difference using a thin-plate spline model. The proposed approach is capable of preserving the topology of the template shape in the deformation. This property is achieved by inserting a set of additional points and imposing a set of linear equality and/or inequality constraints. The underlying optimization problem is solved using a quadratic programming algorithm. The proposed method has been tested using practical data in the context of shape-based image segmentation. Some relevant practical issues, such as missing detected landmarks and selection of the regularization parameter are also briefly discussed.