Cognitive Hybrid PSO/SA Combinatorial Optimization

K. Brezinski, K. Ferens
{"title":"Cognitive Hybrid PSO/SA Combinatorial Optimization","authors":"K. Brezinski, K. Ferens","doi":"10.1109/ICCICC46617.2019.9146062","DOIUrl":null,"url":null,"abstract":"This paper presents a population based simulated annealing algorithm to improve modelling of cognitive processes. Particle Swarm Optimization (PSO) is embedded within the basic Simulated Annealing (SA) algorithm to allow for multiple concurrent candidate solutions through the use of a population-driven social coefficient updating the other population members. A modified ramping strategy which balances inertial, personal and swarm coefficients is introduced. The hybrid PSO/SA algorithm was tested on the travelling salesperson problem (TSP), and was shown to outperform the individual algorithms by improving their limitations in exploration and exploitation.","PeriodicalId":294902,"journal":{"name":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC46617.2019.9146062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a population based simulated annealing algorithm to improve modelling of cognitive processes. Particle Swarm Optimization (PSO) is embedded within the basic Simulated Annealing (SA) algorithm to allow for multiple concurrent candidate solutions through the use of a population-driven social coefficient updating the other population members. A modified ramping strategy which balances inertial, personal and swarm coefficients is introduced. The hybrid PSO/SA algorithm was tested on the travelling salesperson problem (TSP), and was shown to outperform the individual algorithms by improving their limitations in exploration and exploitation.
认知混合PSO/SA组合优化
本文提出了一种基于群体的模拟退火算法来改进认知过程的建模。粒子群优化(PSO)嵌入到基本的模拟退火(SA)算法中,通过使用群体驱动的社会系数来更新其他群体成员,从而允许多个并发候选解决方案。提出了一种改进的平衡惯性系数、个人系数和群体系数的爬坡策略。在旅行销售人员问题(TSP)上对PSO/SA混合算法进行了测试,结果表明,通过改进单个算法在探索和开发方面的局限性,PSO/SA混合算法优于单个算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信