Image Labeling by Integrating Local, Middle and Global Information

T. Ishida, K. Hotta
{"title":"Image Labeling by Integrating Local, Middle and Global Information","authors":"T. Ishida, K. Hotta","doi":"10.1109/DICTA.2015.7371268","DOIUrl":null,"url":null,"abstract":"We carry out image labeling based on probabilistic integration of local, middle and global information. Local information is effective for capturing color and texture pattern. Middle information is obtained from patches which are larger than local regions and is able to incorporate context information. Global information obtained from an entire image helps to decide the presence of categories in the scene. In the experiments using the MSRC21 dataset, labeling accuracies are much improved by integrating local, middle and global information. Our method gave the state-of-the-art performance.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We carry out image labeling based on probabilistic integration of local, middle and global information. Local information is effective for capturing color and texture pattern. Middle information is obtained from patches which are larger than local regions and is able to incorporate context information. Global information obtained from an entire image helps to decide the presence of categories in the scene. In the experiments using the MSRC21 dataset, labeling accuracies are much improved by integrating local, middle and global information. Our method gave the state-of-the-art performance.
集成局部、中间和全局信息的图像标注
我们基于局部、中间和全局信息的概率集成来进行图像标注。局部信息是捕获颜色和纹理图案的有效方法。中间信息是从比局部区域大的补丁中获得的,并且能够包含上下文信息。从整个图像中获得的全局信息有助于确定场景中类别的存在。在使用MSRC21数据集的实验中,通过整合局部、中间和全局信息,大大提高了标注精度。我们的方法具有最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信