Speed Bump Detection on Roads using Artificial Vision

A. L. Ballinas-Hernández, Iván Olmos, J. A. Olvera-López
{"title":"Speed Bump Detection on Roads using Artificial Vision","authors":"A. L. Ballinas-Hernández, Iván Olmos, J. A. Olvera-López","doi":"10.13053/rcs-148-9-6","DOIUrl":null,"url":null,"abstract":"In recent decades, self-driving has been a topic of wide interest for Artificial Intelligence and the Automotive Industry. The irregularities detection on road surfaces is a task with great challenges. In developing countries, it is very common to find un-marked speed bumps on road surfaces which reduce the security and stability of self-driving cars. The existing techniques have not completely solved the speed bump detection without a well-marked signaling. The main contribution of this work is the design of a methodology that use a pre-trained convolutional neural network and supervised automatic classification, by using the analysis of elevations on surfaces through stereo vision, for detect well-marked and no well-marked speed bumps to improve existing techniques.","PeriodicalId":220522,"journal":{"name":"Res. Comput. Sci.","volume":"258 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Res. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13053/rcs-148-9-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In recent decades, self-driving has been a topic of wide interest for Artificial Intelligence and the Automotive Industry. The irregularities detection on road surfaces is a task with great challenges. In developing countries, it is very common to find un-marked speed bumps on road surfaces which reduce the security and stability of self-driving cars. The existing techniques have not completely solved the speed bump detection without a well-marked signaling. The main contribution of this work is the design of a methodology that use a pre-trained convolutional neural network and supervised automatic classification, by using the analysis of elevations on surfaces through stereo vision, for detect well-marked and no well-marked speed bumps to improve existing techniques.
基于人工视觉的道路减速带检测
近几十年来,自动驾驶一直是人工智能和汽车行业广泛关注的话题。路面不规则性检测是一项极具挑战性的工作。在发展中国家,在路面上发现没有标记的减速带是很常见的,这会降低自动驾驶汽车的安全性和稳定性。现有的技术还不能完全解决没有良好标记信号的减速带检测问题。这项工作的主要贡献是设计了一种方法,该方法使用预训练的卷积神经网络和监督自动分类,通过立体视觉分析表面的高度,用于检测标记良好和未标记良好的减速带,以改进现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信