Reduction of syntactic video data clustering complexity in processing with compacted dither coding

L. Ranathunga, R. Zainuddin, N. A. Abdullah
{"title":"Reduction of syntactic video data clustering complexity in processing with compacted dither coding","authors":"L. Ranathunga, R. Zainuddin, N. A. Abdullah","doi":"10.1109/ITSIM.2008.4631551","DOIUrl":null,"url":null,"abstract":"The growing consumption of the digital video information is significant in this era. The digital video analysis and retrieval is not as simple as analysis and retrieval of information in normal data system. The visual information of video data lies in very complex nature with its high chromatic depth and density. The extraction of visual features from noisy and complex video data has a hierarchy of different sub systems from video file to chromatic attributes. This paper introduces a novel approach to reduce the video visual feature analyzing complexity and the higher level colour complexity of video data. It comes with simple vector quantization mechanism, high rate performance approach for classification of digital video visual features. Further this approach has tested with various video formats to generate probabilistic coding mechanism. The results of this approach show that it can be further enhanced with video graphical knowledge to guide the visual feature clustering with trained knowledge base.","PeriodicalId":314159,"journal":{"name":"2008 International Symposium on Information Technology","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSIM.2008.4631551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The growing consumption of the digital video information is significant in this era. The digital video analysis and retrieval is not as simple as analysis and retrieval of information in normal data system. The visual information of video data lies in very complex nature with its high chromatic depth and density. The extraction of visual features from noisy and complex video data has a hierarchy of different sub systems from video file to chromatic attributes. This paper introduces a novel approach to reduce the video visual feature analyzing complexity and the higher level colour complexity of video data. It comes with simple vector quantization mechanism, high rate performance approach for classification of digital video visual features. Further this approach has tested with various video formats to generate probabilistic coding mechanism. The results of this approach show that it can be further enhanced with video graphical knowledge to guide the visual feature clustering with trained knowledge base.
压缩抖动编码处理中降低句法视频数据聚类复杂度
数字视频信息消费的增长在这个时代意义重大。数字视频的分析与检索并不像普通数据系统中的信息分析与检索那么简单。视频数据的视觉信息具有高度的色彩深度和密度,具有非常复杂的性质。从噪声和复杂视频数据中提取视觉特征具有从视频文件到色彩属性的不同子系统层次。本文介绍了一种降低视频视觉特征分析复杂度和视频数据较高层次色彩复杂度的新方法。它具有简单的矢量量化机制,高速率性能的数字视频视觉特征分类方法。此外,该方法已在各种视频格式上进行了测试,以生成概率编码机制。结果表明,该方法可以进一步增强视频图形知识,以训练好的知识库指导视觉特征聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信