{"title":"Investigation of evolutionary feature subset selection in multi-temporal datasets for harmful algal bloom detection","authors":"B. Gokaraju, S. Durbha, R. King, N. Younan","doi":"10.1109/MULTI-TEMP.2011.6005070","DOIUrl":null,"url":null,"abstract":"In the present study we investigate the evolutionary feature subset selection using wrapper based genetic algorithms on Multi-temporal datasets. Feature subset selection helps in reducing the original feature dimension and also yields high performance. The evolutionary strategy attains a global optimum by reducing the computations iteratively and by traversing intelligently in the entire feature space. This method gave a very high performance improvement up to 0.97 kappa accuracy with a best reduced feature dimension for harmful algal bloom detection.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In the present study we investigate the evolutionary feature subset selection using wrapper based genetic algorithms on Multi-temporal datasets. Feature subset selection helps in reducing the original feature dimension and also yields high performance. The evolutionary strategy attains a global optimum by reducing the computations iteratively and by traversing intelligently in the entire feature space. This method gave a very high performance improvement up to 0.97 kappa accuracy with a best reduced feature dimension for harmful algal bloom detection.