Suppression of Boundary Effect and Introduction of Scale Correlation for Wavelet based Traffic Prediction

Naoya Matsusue, H. Hasegawa, Ken-ichi Sato
{"title":"Suppression of Boundary Effect and Introduction of Scale Correlation for Wavelet based Traffic Prediction","authors":"Naoya Matsusue, H. Hasegawa, Ken-ichi Sato","doi":"10.1109/MMSP.2007.4412910","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a Wavelet-based prediction method of the Internet traffic volume. By introducing maximal overlap formulation of the Haar wavelet, the proposed method is free from so-called boundary condition, which arises from processing delay of analysis filters of the wavelet transform and refrains from full utilization of information on recent input signals. The proposed method is based on a vector autoregressive model so as to introduce inter-scale correlation of Wavelet coefficient series at different scales.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a Wavelet-based prediction method of the Internet traffic volume. By introducing maximal overlap formulation of the Haar wavelet, the proposed method is free from so-called boundary condition, which arises from processing delay of analysis filters of the wavelet transform and refrains from full utilization of information on recent input signals. The proposed method is based on a vector autoregressive model so as to introduce inter-scale correlation of Wavelet coefficient series at different scales.
小波交通预测中边界效应的抑制及尺度相关性的引入
本文提出了一种基于小波的互联网流量预测方法。该方法通过引入Haar小波的最大重叠公式,避免了小波变换分析滤波器处理延迟所导致的边界条件,避免了对近期输入信号信息的充分利用。该方法基于矢量自回归模型,引入不同尺度下小波系数序列的尺度间相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信