Non-Convex Optimization For Sparse Interferometric Phase Estimation

Satvik Chemudupati, P. Pokala, C. Seelamantula
{"title":"Non-Convex Optimization For Sparse Interferometric Phase Estimation","authors":"Satvik Chemudupati, P. Pokala, C. Seelamantula","doi":"10.1109/ICIP40778.2020.9191249","DOIUrl":null,"url":null,"abstract":"We present a new sparsity based technique for interferometric phase estimation. We consider complex extensions of non-convex regularizers such as the minimax concave penalty (MCP) and smoothly clipped absolute deviation penalty (SCAD) for sparse recovery. We solve the problem of interferometric phase estimation based on complex-domain dictionary learning. We develop an algorithm, namely, improved sparse interferometric phase estimation (iSpInPhase) based on alternating direction method of multipliers (ADMM) and Wirtinger calculus for solving the optimization problem. Wiritinger calculus is employed because the cost functions are nonholomorphic. We evaluate the performance of iSpInPhase on synthetic data, namely, truncated Gaussian elevation and also on mountain terrain data, namely, Long’s peak, for different noise levels. Performance comparisons show that iSpInPhase outperforms the state-of-the-art techniques in terms of standard performance assessment measures.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new sparsity based technique for interferometric phase estimation. We consider complex extensions of non-convex regularizers such as the minimax concave penalty (MCP) and smoothly clipped absolute deviation penalty (SCAD) for sparse recovery. We solve the problem of interferometric phase estimation based on complex-domain dictionary learning. We develop an algorithm, namely, improved sparse interferometric phase estimation (iSpInPhase) based on alternating direction method of multipliers (ADMM) and Wirtinger calculus for solving the optimization problem. Wiritinger calculus is employed because the cost functions are nonholomorphic. We evaluate the performance of iSpInPhase on synthetic data, namely, truncated Gaussian elevation and also on mountain terrain data, namely, Long’s peak, for different noise levels. Performance comparisons show that iSpInPhase outperforms the state-of-the-art techniques in terms of standard performance assessment measures.
稀疏干涉相位估计的非凸优化
提出了一种基于稀疏度的干涉相位估计新方法。我们考虑了非凸正则化算子的复杂扩展,如极小极大凹惩罚(MCP)和平滑裁剪绝对偏差惩罚(SCAD)用于稀疏恢复。我们解决了基于复域字典学习的干涉相位估计问题。本文提出了一种基于乘法器交替方向法(ADMM)和Wirtinger演算的改进稀疏干涉相位估计(iSpInPhase)算法来解决优化问题。由于代价函数是非全纯的,所以采用了Wiritinger演算。我们评估了不同噪声水平下iSpInPhase在合成数据(即截断高斯高程)和山地地形数据(即朗峰)上的性能。性能比较表明,iSpInPhase在标准性能评估措施方面优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信