Optimizing Cluster of Questions by Using Dynamic Mutation in Genetic Algorithm

Nur Suhailayani Suhaimi, Siti Nur Kamaliah, N. Arbin, Z. Othman
{"title":"Optimizing Cluster of Questions by Using Dynamic Mutation in Genetic Algorithm","authors":"Nur Suhailayani Suhaimi, Siti Nur Kamaliah, N. Arbin, Z. Othman","doi":"10.1109/AIMS.2015.81","DOIUrl":null,"url":null,"abstract":"Clustering dynamic data is a challenge in identifying and forming groups. This unsupervised learning usually leads to indirect knowledge discovery. The cluster detection algorithm searches for clusters of data which are similar to one another by using similarity measures.Optimizing the clustered data with certain fixed values could be an issue. Depending on the parameters and attributes of the data, the results yielded probably either stuck in local optima or bias by attributes pattern. Performing Genetic Algorithm in the data cluster may increase the probability of the questions being clustered in the optimal group cluster. Dynamic Mutation in Genetic Algorithm used as repair mechanism to ensure the cluster is optimized enough and produce optimum indexed questions set.","PeriodicalId":121874,"journal":{"name":"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIMS.2015.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering dynamic data is a challenge in identifying and forming groups. This unsupervised learning usually leads to indirect knowledge discovery. The cluster detection algorithm searches for clusters of data which are similar to one another by using similarity measures.Optimizing the clustered data with certain fixed values could be an issue. Depending on the parameters and attributes of the data, the results yielded probably either stuck in local optima or bias by attributes pattern. Performing Genetic Algorithm in the data cluster may increase the probability of the questions being clustered in the optimal group cluster. Dynamic Mutation in Genetic Algorithm used as repair mechanism to ensure the cluster is optimized enough and produce optimum indexed questions set.
基于动态变异遗传算法的问题聚类优化
聚类动态数据是识别和形成组的一个挑战。这种无监督学习通常会导致间接的知识发现。聚类检测算法通过相似性度量来搜索彼此相似的数据聚类。使用某些固定值优化群集数据可能是一个问题。根据数据的参数和属性,产生的结果可能陷入局部最优或属性模式偏差。在数据聚类中执行遗传算法可以提高问题聚在最优组聚类中的概率。利用遗传算法中的动态突变作为修复机制,保证聚类得到充分优化,生成最优索引题集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信