Solving least squares problems

C. Lawson, R. Hanson
{"title":"Solving least squares problems","authors":"C. Lawson, R. Hanson","doi":"10.2307/2286501","DOIUrl":null,"url":null,"abstract":"Since the lm function provides a lot of features it is rather complicated. So we are going to instead use the function lsfit as a model. It computes only the coefficient estimates and the residuals. Now would be a good time to read the help file for lsfit. Note that lsfit supports the fitting of multiple least squares models and weighted least squares. Our function will not, hence we can omit the arguments wt, weights and yname. Also, changing tolerances is a little advanced so we will trust the default values and omit the argument tolerance as well.","PeriodicalId":190999,"journal":{"name":"Classics in applied mathematics","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1976-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6616","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classics in applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/2286501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6616

Abstract

Since the lm function provides a lot of features it is rather complicated. So we are going to instead use the function lsfit as a model. It computes only the coefficient estimates and the residuals. Now would be a good time to read the help file for lsfit. Note that lsfit supports the fitting of multiple least squares models and weighted least squares. Our function will not, hence we can omit the arguments wt, weights and yname. Also, changing tolerances is a little advanced so we will trust the default values and omit the argument tolerance as well.
求解最小二乘问题
由于lm函数提供了许多特性,因此它相当复杂。所以我们将使用函数lsfit作为模型。它只计算系数估计和残差。现在是阅读lsfit帮助文件的好时机。注意,lsfit支持多个最小二乘模型和加权最小二乘的拟合。我们的函数不会这样做,因此可以省略参数wt、weights和yname。此外,更改容差稍微高级一些,因此我们将信任默认值并忽略参数容差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信