An evolutionary algorithm method for sampling n-partite graphs

Michel L. Goldstein, G. Yen
{"title":"An evolutionary algorithm method for sampling n-partite graphs","authors":"Michel L. Goldstein, G. Yen","doi":"10.1109/CEC.2004.1331177","DOIUrl":null,"url":null,"abstract":"The growth of use of graph-structured databases modeled on n-partite graphs has increased the ability to generate more flexible databases. However, the calculation of certain features in these databases may be highly resource-consuming. This work proposes a method for approximating these features by sampling. A discussion of the difficulty of sampling in n-partite graphs is made and an evolutionary algorithm-based method is presented that uses the information from a smaller subset of the graph to infer the amount of sampling needed for the rest of the graph. Experimental results are shown on a publications database on Anthrax for finding the most important authors.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The growth of use of graph-structured databases modeled on n-partite graphs has increased the ability to generate more flexible databases. However, the calculation of certain features in these databases may be highly resource-consuming. This work proposes a method for approximating these features by sampling. A discussion of the difficulty of sampling in n-partite graphs is made and an evolutionary algorithm-based method is presented that uses the information from a smaller subset of the graph to infer the amount of sampling needed for the rest of the graph. Experimental results are shown on a publications database on Anthrax for finding the most important authors.
n部图采样的一种进化算法
以n部图为模型的图结构数据库的使用增长提高了生成更灵活数据库的能力。然而,这些数据库中某些特征的计算可能会消耗大量资源。这项工作提出了一种通过采样近似这些特征的方法。讨论了n部图的采样难度,提出了一种基于进化算法的方法,该方法利用图的一个较小子集的信息来推断图的其余部分所需的采样量。实验结果显示在一个关于炭疽的出版物数据库中,以寻找最重要的作者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信