Network Fault Diagnosis Using Hierarchical SVMs Based on Kernel Method

Li Zhang, Xiangru Meng, Hua Zhou
{"title":"Network Fault Diagnosis Using Hierarchical SVMs Based on Kernel Method","authors":"Li Zhang, Xiangru Meng, Hua Zhou","doi":"10.1109/WKDD.2009.79","DOIUrl":null,"url":null,"abstract":"A new method based on kernel which can measure class separability in feature space is proposed in this paper for existing error accumulation when the Hierarchical SVMs is used to diagnose multi-class network fault. This method has defined metrics of sample distribution in feature space, which are used as the rule of constructing Hierarchical SVMs. Experiment results show that this method can restrain error accumulation and has higher multi-class classification accuracy, and offer an effective way for Network fault diagnosis.","PeriodicalId":143250,"journal":{"name":"2009 Second International Workshop on Knowledge Discovery and Data Mining","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2009.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A new method based on kernel which can measure class separability in feature space is proposed in this paper for existing error accumulation when the Hierarchical SVMs is used to diagnose multi-class network fault. This method has defined metrics of sample distribution in feature space, which are used as the rule of constructing Hierarchical SVMs. Experiment results show that this method can restrain error accumulation and has higher multi-class classification accuracy, and offer an effective way for Network fault diagnosis.
基于核方法的分层支持向量机网络故障诊断
针对分层支持向量机诊断多类网络故障时存在的误差积累问题,提出了一种基于核的特征空间类可分性度量方法。该方法定义了样本在特征空间中的分布度量,并将其作为构造分层支持向量机的规则。实验结果表明,该方法能够抑制误差积累,具有较高的多类分类精度,为网络故障诊断提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信