Autofocus compressed sensing imaging based on nonlinear conjugate gradient

T. Jin
{"title":"Autofocus compressed sensing imaging based on nonlinear conjugate gradient","authors":"T. Jin","doi":"10.23919/URSIGASS.2017.8105389","DOIUrl":null,"url":null,"abstract":"In this paper, the autofocus compressed sensing (ACS) imaging method is proposed to obtain the imagery with some unknown parameters in the forward model. The proposed method updates the unknown parameters of the measurement matrix and constructs the imagery alternately within an iterative framework. The unknown parameters, denoted as hyperparameters, are estimated using the nonlinear conjugate gradient method. The proposed ACS imaging method is validated using through-the-wall imaging radar data.","PeriodicalId":377869,"journal":{"name":"2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIGASS.2017.8105389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, the autofocus compressed sensing (ACS) imaging method is proposed to obtain the imagery with some unknown parameters in the forward model. The proposed method updates the unknown parameters of the measurement matrix and constructs the imagery alternately within an iterative framework. The unknown parameters, denoted as hyperparameters, are estimated using the nonlinear conjugate gradient method. The proposed ACS imaging method is validated using through-the-wall imaging radar data.
基于非线性共轭梯度的自动对焦压缩传感成像
本文提出了一种自动对焦压缩感知(ACS)成像方法,用于获取正演模型中含有未知参数的图像。该方法对测量矩阵的未知参数进行更新,并在迭代框架内交替构建图像。用非线性共轭梯度法估计未知参数,并将其记为超参数。采用穿壁成像雷达数据验证了所提出的ACS成像方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信