DPF-based japanese phoneme recognition using tandem MLNs

Mohammed Rokibul Alam Kotwal, Manoj Banik, G. M. Islam, M. Hossain, Foyzul Hassan, Mohammad Mahedi Hasan, Muhammad Ghulam, M. N. Huda
{"title":"DPF-based japanese phoneme recognition using tandem MLNs","authors":"Mohammed Rokibul Alam Kotwal, Manoj Banik, G. M. Islam, M. Hossain, Foyzul Hassan, Mohammad Mahedi Hasan, Muhammad Ghulam, M. N. Huda","doi":"10.1109/HIS.2010.5600078","DOIUrl":null,"url":null,"abstract":"This paper presents a method for automatic phoneme recognition for Japanese language using tandem MLNs. The method comprises three stages: (i) multilayer neural network (MLN) that converts acoustic features into distinctive phonetic features DPFs, (ii) MLN that combines DPFs and acoustic features as input and generates a 45 dimensional DPF vector with less context effect and (iii) the 45 dimensional feature vector generated by the second MLN are inserted into a hidden Markov model (HMM) based classifier to obtain more accurate phoneme strings from the input speech. From the experiments on Japanese Newspaper Article Sentences (JNAS), it is observed that the proposed method provides a higher phoneme correct rate and improves phoneme accuracy tremendously over the method based on a single MLN. Moreover, it requires fewer mixture components in HMMs.","PeriodicalId":174618,"journal":{"name":"2010 10th International Conference on Hybrid Intelligent Systems","volume":"250 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2010.5600078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a method for automatic phoneme recognition for Japanese language using tandem MLNs. The method comprises three stages: (i) multilayer neural network (MLN) that converts acoustic features into distinctive phonetic features DPFs, (ii) MLN that combines DPFs and acoustic features as input and generates a 45 dimensional DPF vector with less context effect and (iii) the 45 dimensional feature vector generated by the second MLN are inserted into a hidden Markov model (HMM) based classifier to obtain more accurate phoneme strings from the input speech. From the experiments on Japanese Newspaper Article Sentences (JNAS), it is observed that the proposed method provides a higher phoneme correct rate and improves phoneme accuracy tremendously over the method based on a single MLN. Moreover, it requires fewer mixture components in HMMs.
基于dpf的串联mln日语音素识别
提出了一种基于串联mln的日语音素自动识别方法。该方法包括三个阶段:(i)多层神经网络(MLN)将声学特征转换为独特的语音特征DPF; (ii)多层神经网络将DPF和声学特征作为输入,生成45维DPF向量,上下文影响较小;(iii)将第二个MLN生成的45维特征向量插入到基于隐马尔可夫模型(HMM)的分类器中,从输入语音中获得更准确的音素字符串。通过对日文报纸文章句子的实验,发现该方法比基于单个MLN的方法具有更高的音素正确率和音素正确率。此外,它需要更少的混合成分在hmm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信