Analysis and Visualization of Proteomic Data by Fuzzy Labeled Self-Organizing Maps

Frank-Michael Schleif, T. Elssner, M. Kostrzewa, T. Villmann, B. Hammer
{"title":"Analysis and Visualization of Proteomic Data by Fuzzy Labeled Self-Organizing Maps","authors":"Frank-Michael Schleif, T. Elssner, M. Kostrzewa, T. Villmann, B. Hammer","doi":"10.1109/CBMS.2006.44","DOIUrl":null,"url":null,"abstract":"We extend the self-organizing map in the variant as proposed by Heskes to a supervised fuzzy classification method. This leads to a robust classifier where efficient learning with fuzzy labeled or partially contradictory data is possible. Further, the integration of labeling into the location of prototypes in a self-organizing map leads to a visualization of those parts of the data relevant for the classification. The method is incorporated in a clinical proteomics toolkit dedicated for biomarker search which allows the necessary preprocessing and further data analysis with additional visualizations","PeriodicalId":208693,"journal":{"name":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2006.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We extend the self-organizing map in the variant as proposed by Heskes to a supervised fuzzy classification method. This leads to a robust classifier where efficient learning with fuzzy labeled or partially contradictory data is possible. Further, the integration of labeling into the location of prototypes in a self-organizing map leads to a visualization of those parts of the data relevant for the classification. The method is incorporated in a clinical proteomics toolkit dedicated for biomarker search which allows the necessary preprocessing and further data analysis with additional visualizations
模糊标记自组织图谱的蛋白质组学数据分析与可视化
我们将Heskes提出的变体中的自组织映射扩展为监督模糊分类方法。这导致了一个鲁棒分类器,其中有效的学习模糊标记或部分矛盾的数据是可能的。此外,将标签集成到自组织地图中的原型位置中,可以将与分类相关的数据部分可视化。该方法被纳入临床蛋白质组学工具包,专门用于生物标志物搜索,允许必要的预处理和进一步的数据分析与额外的可视化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信