Lucas R. B. Brasilino, A. Shroyer, Naveen Marri, Saurabh Agrawal, Catherine L. Pilachowski, E. Kissel, D. M. Swany
{"title":"Data Distillation at the Network's Edge: Exposing Programmable Logic with InLocus","authors":"Lucas R. B. Brasilino, A. Shroyer, Naveen Marri, Saurabh Agrawal, Catherine L. Pilachowski, E. Kissel, D. M. Swany","doi":"10.1109/EDGE.2018.00011","DOIUrl":null,"url":null,"abstract":"With proliferating sensor networks and Internet of Things-scale devices, networks are increasingly diverse and heterogeneous. To enable the most efficient use of network bandwidth with the lowest possible latency, we propose InLocus, a stream-oriented architecture situated at (or near) the network's edge which balances hardware-accelerated performance with the flexibility of asynchronous software-based control. In this paper we utilize a flexible platform (Xilinx Zynq SoC) to compare microbenchmarks of several InLocus implementations: naive JavaScript, Handwritten C, and High-Level Synthesis (HLS) in programmable hardware.","PeriodicalId":396887,"journal":{"name":"2018 IEEE International Conference on Edge Computing (EDGE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Edge Computing (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE.2018.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
With proliferating sensor networks and Internet of Things-scale devices, networks are increasingly diverse and heterogeneous. To enable the most efficient use of network bandwidth with the lowest possible latency, we propose InLocus, a stream-oriented architecture situated at (or near) the network's edge which balances hardware-accelerated performance with the flexibility of asynchronous software-based control. In this paper we utilize a flexible platform (Xilinx Zynq SoC) to compare microbenchmarks of several InLocus implementations: naive JavaScript, Handwritten C, and High-Level Synthesis (HLS) in programmable hardware.