Inferring mood in ubiquitous conversational video

Dairazalia Sanchez-Cortes, Joan-Isaac Biel, Shiro Kumano, Junji Yamato, K. Otsuka, D. Gática-Pérez
{"title":"Inferring mood in ubiquitous conversational video","authors":"Dairazalia Sanchez-Cortes, Joan-Isaac Biel, Shiro Kumano, Junji Yamato, K. Otsuka, D. Gática-Pérez","doi":"10.1145/2541831.2541864","DOIUrl":null,"url":null,"abstract":"Conversational social video is becoming a worldwide trend. Video communication allows a more natural interaction, when aiming to share personal news, ideas, and opinions, by transmitting both verbal content and nonverbal behavior. However, the automatic analysis of natural mood is challenging, since it is displayed in parallel via voice, face, and body. This paper presents an automatic approach to infer 11 natural mood categories in conversational social video using single and multimodal nonverbal cues extracted from video blogs (vlogs) from YouTube. The mood labels used in our work were collected via crowdsourcing. Our approach is promising for several of the studied mood categories. Our study demonstrates that although multimodal features perform better than single channel features, not always all the available channels are needed to accurately discriminate mood in videos.","PeriodicalId":286368,"journal":{"name":"Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2541831.2541864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Conversational social video is becoming a worldwide trend. Video communication allows a more natural interaction, when aiming to share personal news, ideas, and opinions, by transmitting both verbal content and nonverbal behavior. However, the automatic analysis of natural mood is challenging, since it is displayed in parallel via voice, face, and body. This paper presents an automatic approach to infer 11 natural mood categories in conversational social video using single and multimodal nonverbal cues extracted from video blogs (vlogs) from YouTube. The mood labels used in our work were collected via crowdsourcing. Our approach is promising for several of the studied mood categories. Our study demonstrates that although multimodal features perform better than single channel features, not always all the available channels are needed to accurately discriminate mood in videos.
在无处不在的对话视频中推断情绪
会话式社交视频正在成为一种全球趋势。视频交流允许更自然的互动,当目的是分享个人新闻,想法和意见,通过传递语言内容和非语言行为。然而,自然情绪的自动分析是具有挑战性的,因为它是通过声音、面部和身体并行显示的。本文提出了一种自动推断会话社交视频中11种自然情绪类别的方法,该方法使用从YouTube视频博客(vlogs)中提取的单模态和多模态非语言线索。我们工作中使用的情绪标签是通过众包收集的。我们的方法对研究的几种情绪类别很有希望。我们的研究表明,尽管多模态特征比单通道特征表现得更好,但并不总是需要所有可用的通道来准确区分视频中的情绪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信