• INEQUALITIES CONCERNING THE B-OPERATORS

N. A. Rather, S. Ahanger, M. Shah
{"title":"• INEQUALITIES CONCERNING THE B-OPERATORS","authors":"N. A. Rather, S. Ahanger, M. Shah","doi":"10.15393/J3.ART.2016.3250","DOIUrl":null,"url":null,"abstract":"In this paper we consider an operator B which carries a polynomial P(z) of degree n into B[P(z)]= λ0P(z) + λ1(nz/2)P’(z)/1! + λ2 (nz/2)2P”(z)/2! Where λ0, λ1 and λ2 are such that all the zeros of U(z)= λ0 + C(n, 1)λ1z + C(n, 2) λ2 z2 lie in the half plane |z|≤|z-n/2| and investigate the dependence of |B[P(Rz)] – α B[P(rz)]| on the minimum and the maximum modulus of P(z) on for every real or complex number α with |α|≤ 1 , R > r ≥ 1 with restriction on the zeros of the polynomial P(z) and establish some new operator preserving inequalities between polynomials.","PeriodicalId":161718,"journal":{"name":"International Journal of Mathematical Archive","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15393/J3.ART.2016.3250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we consider an operator B which carries a polynomial P(z) of degree n into B[P(z)]= λ0P(z) + λ1(nz/2)P’(z)/1! + λ2 (nz/2)2P”(z)/2! Where λ0, λ1 and λ2 are such that all the zeros of U(z)= λ0 + C(n, 1)λ1z + C(n, 2) λ2 z2 lie in the half plane |z|≤|z-n/2| and investigate the dependence of |B[P(Rz)] – α B[P(rz)]| on the minimum and the maximum modulus of P(z) on for every real or complex number α with |α|≤ 1 , R > r ≥ 1 with restriction on the zeros of the polynomial P(z) and establish some new operator preserving inequalities between polynomials.
•关于b算子的不等式
本文考虑一个算子B,它将n次多项式P(z)带入B[P(z)]= λ0P(z) + λ1(nz/2)P ' (z)/1!+ λ2 (nz/2)2P ' (z)/2!λ0,λ1和λ2,这样所有的U (z) =λ0 0 + C (n, 1)λ1 z + C (n, 2)λ2 z2躺在半平面z | |≤| zn / 2 |和调查的依赖| B [P (Rz)] -αB [P (Rz)] |在最小和最大模量P (z)为每一个真实的或复数与|αα|≤1,R > R≥1与限制的零多项式P (z)和建立一些新的运营商保存多项式之间的不平等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信