Gate Drive Concept for dv/dt Control of GaN GIT-Based Motor Drive Inverters

E. Persson, D. Wilhelm
{"title":"Gate Drive Concept for dv/dt Control of GaN GIT-Based Motor Drive Inverters","authors":"E. Persson, D. Wilhelm","doi":"10.1109/IEDM13553.2020.9372095","DOIUrl":null,"url":null,"abstract":"In high-volume applications like home appliance motor drives, system cost and density are key value metrics. In many cases, system packaging puts severe limits on the power dissipation ability of the power electronics, so inverter losses must be kept to a minimum. GaN power transistors can offer significant improvements in power loss compared to IGBT or MOSFET-based inverters [1], [2], but controlling switching speed (dv/dt) can be challenging.This paper proposes a simplified active dv/dt control method that can be integrated into the driver IC and GaN transistor using low-cost techniques without adding passive components or bondwires inside the Integrated Power Module (IPM). The circuit is implemented in a monolithic 3-phase gate driver IC using low-cost 0.35 μm HVJI CMOS process. The package- integrated 3-phase inverter using the IC with 6 discrete GaN GIT is demonstrated to be capable of delivering 226 W from a 12x12 mm package, about double the power delivered by today’s silicon-based inverter in the same package size.The results of simulation and experiment are provided for an integrated IPM driving a motor load up to 226 W.","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9372095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In high-volume applications like home appliance motor drives, system cost and density are key value metrics. In many cases, system packaging puts severe limits on the power dissipation ability of the power electronics, so inverter losses must be kept to a minimum. GaN power transistors can offer significant improvements in power loss compared to IGBT or MOSFET-based inverters [1], [2], but controlling switching speed (dv/dt) can be challenging.This paper proposes a simplified active dv/dt control method that can be integrated into the driver IC and GaN transistor using low-cost techniques without adding passive components or bondwires inside the Integrated Power Module (IPM). The circuit is implemented in a monolithic 3-phase gate driver IC using low-cost 0.35 μm HVJI CMOS process. The package- integrated 3-phase inverter using the IC with 6 discrete GaN GIT is demonstrated to be capable of delivering 226 W from a 12x12 mm package, about double the power delivered by today’s silicon-based inverter in the same package size.The results of simulation and experiment are provided for an integrated IPM driving a motor load up to 226 W.
基于GaN git的电机驱动逆变器dv/dt控制的栅极驱动概念
在像家用电器电机驱动这样的大批量应用中,系统成本和密度是关键的价值指标。在许多情况下,系统封装对电力电子器件的功耗能力施加了严格的限制,因此逆变器的损耗必须保持在最低限度。与IGBT或基于mosfet的逆变器相比,GaN功率晶体管可以显著改善功率损耗[1],[2],但控制开关速度(dv/dt)可能具有挑战性。本文提出了一种简化的有源dv/dt控制方法,该方法可以使用低成本技术集成到驱动IC和GaN晶体管中,而无需在集成功率模块(IPM)内部添加无源元件或键合线。该电路采用低成本的0.35 μm HVJI CMOS工艺在单片三相栅极驱动IC中实现。采用6分立GaN GIT集成IC的封装集成三相逆变器被证明能够从12x12 mm封装中提供226 W的功率,大约是目前相同封装尺寸的硅基逆变器功率的两倍。仿真和实验结果表明,集成IPM可以驱动高达226 W的电机负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信