An Evaluation Dataset Construction Approach for Task-Oriented Dialogue

Weidong Liu, Shuo Liu, Donghui Gao, Rui Wang, Xuanfei Duan, Ling Jin
{"title":"An Evaluation Dataset Construction Approach for Task-Oriented Dialogue","authors":"Weidong Liu, Shuo Liu, Donghui Gao, Rui Wang, Xuanfei Duan, Ling Jin","doi":"10.1109/IC-NIDC54101.2021.9660436","DOIUrl":null,"url":null,"abstract":"Aiming to construct an evaluation dataset for task-oriented dialogues under slot filling task, this paper proposes a dataset construction approach based on two optimized data augmentation techniques named back-translation annotation synchronization and slot substitution. These optimized techniques perform well in reducing error annotations introduced by data augmentation and help maintain the style and difficulty of the original dataset. Besides, these techniques can be easily implemented by leveraging commercial interfaces and executing automated scripts, making the approach especially suitable for evaluation dataset construction. In experiments, MultiWOZ 2.0 was utilized as the benchmark dataset to generate new samples. The newly generated dialogues have lower error rate in annotations, and show the same evaluation capability as the original data, which verifies the feasibility of the construction approach and the effectiveness of two optimization methods.","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming to construct an evaluation dataset for task-oriented dialogues under slot filling task, this paper proposes a dataset construction approach based on two optimized data augmentation techniques named back-translation annotation synchronization and slot substitution. These optimized techniques perform well in reducing error annotations introduced by data augmentation and help maintain the style and difficulty of the original dataset. Besides, these techniques can be easily implemented by leveraging commercial interfaces and executing automated scripts, making the approach especially suitable for evaluation dataset construction. In experiments, MultiWOZ 2.0 was utilized as the benchmark dataset to generate new samples. The newly generated dialogues have lower error rate in annotations, and show the same evaluation capability as the original data, which verifies the feasibility of the construction approach and the effectiveness of two optimization methods.
面向任务对话的评估数据集构建方法
为了构建面向任务对话的槽填充任务评价数据集,提出了一种基于反向翻译标注同步和槽替换两种优化数据增强技术的数据集构建方法。这些优化的技术在减少数据增强带来的错误注释方面表现良好,并有助于保持原始数据集的风格和难度。此外,这些技术可以通过利用商业接口和执行自动化脚本轻松实现,使得该方法特别适合于评估数据集的构建。在实验中,使用MultiWOZ 2.0作为基准数据集来生成新的样本。新生成的对话具有较低的标注错误率,并表现出与原始数据相同的评价能力,验证了构建方法的可行性和两种优化方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信