A Multi-subpopulation Accelerating Genetic Algorithm Based on Attractors (MAGA): Performance in Function Optimization

Zhiyi Lin, Yuanxiang Li
{"title":"A Multi-subpopulation Accelerating Genetic Algorithm Based on Attractors (MAGA): Performance in Function Optimization","authors":"Zhiyi Lin, Yuanxiang Li","doi":"10.1109/ICNC.2007.73","DOIUrl":null,"url":null,"abstract":"A multi-subpopulation accelerating genetic algorithm based on attractors(MAGA) is proposed to cope with the drawback of genetic algorithms. MAGA views the excellent individuals as attractors and generates local small populations in the neighbor of them to maintain the diversity of the population. In the course of searching, MAGA constantly shrinks the searching neighbor and uses the accelerating operators to speed up the evolution of MAGA. The convergence analysis shows MAGA can converge to global optimization under some circumstances. Finally, MAGA's efficiency is validated through optimization of two benchmark functions.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A multi-subpopulation accelerating genetic algorithm based on attractors(MAGA) is proposed to cope with the drawback of genetic algorithms. MAGA views the excellent individuals as attractors and generates local small populations in the neighbor of them to maintain the diversity of the population. In the course of searching, MAGA constantly shrinks the searching neighbor and uses the accelerating operators to speed up the evolution of MAGA. The convergence analysis shows MAGA can converge to global optimization under some circumstances. Finally, MAGA's efficiency is validated through optimization of two benchmark functions.
基于吸引子的多亚种群加速遗传算法:在函数优化中的性能
针对遗传算法的缺点,提出了一种基于吸引子的多亚种群加速遗传算法。MAGA将优秀的个体视为吸引者,并在他们的邻居中产生本地小种群,以保持种群的多样性。在搜索过程中,MAGA不断缩小搜索邻居,并使用加速算子加速MAGA的进化。收敛性分析表明,在某些情况下,MAGA算法可以收敛到全局最优。最后,通过对两个基准函数的优化验证了MAGA算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信