H. Pflug, Steven Beumer, Koen Weiiand, Tina Bartulović Ćulibrk, Jeroen Tol, H. Visser
{"title":"Parallel Resonant Inductive Wireless Power Transfer","authors":"H. Pflug, Steven Beumer, Koen Weiiand, Tina Bartulović Ćulibrk, Jeroen Tol, H. Visser","doi":"10.1109/WPTC45513.2019.9055623","DOIUrl":null,"url":null,"abstract":"This paper presents a parallel resonant inductive wireless power transfer system for medical implant applications. The aim of the transcutaneous charging system is to address a larger range of implant depth compared to the current state of the art technology. The impact on amplifier load impedance and with that, -design and -modeling, is shown from an analytical stand-point. The obtained model provides insight into component tolerance impact as well. An objective simulation comparison approach for rectifier topologies further ensures an efficient design. With a 0.5 W transmitter output power, a transferred current of 100 mA is measured over an implant depth of 10 to 50 mm and fitting well both a time- and frequency domain simulation model. The latter enabling complex analyses like class- $\\mathrm{D}$ amplifier load pull combined with component tuning.","PeriodicalId":148719,"journal":{"name":"2019 IEEE Wireless Power Transfer Conference (WPTC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Wireless Power Transfer Conference (WPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPTC45513.2019.9055623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a parallel resonant inductive wireless power transfer system for medical implant applications. The aim of the transcutaneous charging system is to address a larger range of implant depth compared to the current state of the art technology. The impact on amplifier load impedance and with that, -design and -modeling, is shown from an analytical stand-point. The obtained model provides insight into component tolerance impact as well. An objective simulation comparison approach for rectifier topologies further ensures an efficient design. With a 0.5 W transmitter output power, a transferred current of 100 mA is measured over an implant depth of 10 to 50 mm and fitting well both a time- and frequency domain simulation model. The latter enabling complex analyses like class- $\mathrm{D}$ amplifier load pull combined with component tuning.