Industry Energy Consumption Prediction Using Data Mining Techniques

E. SathishkumarV, Jonghyun Lim, Myeongbae Lee, K. Cho, Jangwoo Park, Changsun Shin
{"title":"Industry Energy Consumption Prediction Using Data Mining Techniques","authors":"E. SathishkumarV, Jonghyun Lim, Myeongbae Lee, K. Cho, Jangwoo Park, Changsun Shin","doi":"10.21742/ijeic.2020.11.1.02","DOIUrl":null,"url":null,"abstract":"Predicting energy consumption is an essential part of the electricity company supply. This paper presents and explores energy consumption prediction models using data mining approach for the steel industry. DAEWOO steel industry energy consumption data is used in this study. Data used include lagging and leading current reactive power, lagging and leading current power factor, carbon dioxide (tCO2) emission, and load types. The prediction models are trained with its best hyperparameters selected using repeated cross-validation and are evaluated using a test set: (a) General Linear Regression, (b) Classification and Regression Trees (c) Support Vector Machine with Radial Basis Kernel (d) K Nearest Neighbor, (e) Random Forest. Four evaluation indices such as Root Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage Error and Coefficient of Variation are used to measure the prediction efficiency of regression models. The results show that the Random Forest model can best predict energy consumption and outperforms other conventional algorithms in comparison.","PeriodicalId":116649,"journal":{"name":"International Journal of Energy, Information and Communications","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy, Information and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21742/ijeic.2020.11.1.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Predicting energy consumption is an essential part of the electricity company supply. This paper presents and explores energy consumption prediction models using data mining approach for the steel industry. DAEWOO steel industry energy consumption data is used in this study. Data used include lagging and leading current reactive power, lagging and leading current power factor, carbon dioxide (tCO2) emission, and load types. The prediction models are trained with its best hyperparameters selected using repeated cross-validation and are evaluated using a test set: (a) General Linear Regression, (b) Classification and Regression Trees (c) Support Vector Machine with Radial Basis Kernel (d) K Nearest Neighbor, (e) Random Forest. Four evaluation indices such as Root Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage Error and Coefficient of Variation are used to measure the prediction efficiency of regression models. The results show that the Random Forest model can best predict energy consumption and outperforms other conventional algorithms in comparison.
基于数据挖掘技术的工业能耗预测
能源消耗预测是电力公司供应的重要组成部分。本文提出并探索了基于数据挖掘方法的钢铁行业能耗预测模型。本研究使用大宇钢铁工业的能源消耗数据。使用的数据包括滞后和超前电流无功功率、滞后和超前电流功率因数、二氧化碳(tCO2)排放和负载类型。预测模型使用使用重复交叉验证选择的最佳超参数进行训练,并使用测试集进行评估:(a)一般线性回归,(b)分类和回归树(c)径向基核支持向量机(d) K近邻,(e)随机森林。采用均方根误差、平均绝对误差、平均绝对百分比误差和变异系数四个评价指标来衡量回归模型的预测效率。结果表明,随机森林模型能较好地预测能源消耗,并优于其他传统算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信