{"title":"A Polyphase nonlinear equalization architecture and semi-blind identification method","authors":"B. Miller, J. Goodman, M. Herman","doi":"10.1109/ACSSC.2008.5074474","DOIUrl":null,"url":null,"abstract":"In this paper, we present an architecture and semi-blind identification method for a polyphase nonlinear equalizer (pNLEQ). Such an equalizer is useful for extending the dynamic range of time-interleaved analog-to-digital converters (ADCs). Our proposed architecture is a polyphase extension to other architectures that partition the Volterra kernel into small nonlinear filters with relatively low computational complexity. Our semi-blind identification technique addresses important practical concerns in the equalizer identification process. We describe our architecture and demonstrate its performance with measured results when applied to a National Semiconductor ADC081000.","PeriodicalId":416114,"journal":{"name":"2008 42nd Asilomar Conference on Signals, Systems and Computers","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 42nd Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2008.5074474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we present an architecture and semi-blind identification method for a polyphase nonlinear equalizer (pNLEQ). Such an equalizer is useful for extending the dynamic range of time-interleaved analog-to-digital converters (ADCs). Our proposed architecture is a polyphase extension to other architectures that partition the Volterra kernel into small nonlinear filters with relatively low computational complexity. Our semi-blind identification technique addresses important practical concerns in the equalizer identification process. We describe our architecture and demonstrate its performance with measured results when applied to a National Semiconductor ADC081000.